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Molecular simulation in a nutshell

Wikipedia: Molecular modeling
Molecular modeling encompasses all methods,
theoretical and computational, used to model or mimic
the behavior of molecules.

Important domain of numerical simulation (1998
and 2013 Chemistry Nobel prizes);
diversity of physical and mathematical models;
at the European level, 1/4 ∼ 1/3 of the
computation time on supercomputers is dedicated
to molecular simulation.

⇝ Electronic structure calculation is part of this field.

xkcd n°2214
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What is electronic structure ?

The properties of molecules and materials rely on
the behavior of their electrons: nuclei are
considered as point particles and electrons are
modeled with quantum mechanics.
Electronic structure theory is the study of this
behavior:

What is the distribution of the electrons ?
Which energy levels can they reach ? How do they
populate them ?
What are the consequences on macroscopic
properties ?

Except for very few systems, modern computers are
required to compute (approximate) answers to
these questions.

Source: https://pediaa.com

Water is a good solvent because of its
polarized electron distribution.
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Example: electrical conductivity and band diagrams

Insulators and semi-conductors
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Silicon band structure

Metals
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Magnesium band structure

Plots generated with DFTK.jl.
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https://github.com/JuliaMolSim/DFTK.jl/
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What does it mean ?

Babylonian clay tablet YBC 7289 (1800-1600 BC) with
annotations to approximate the square root of 2.

Source: Wikipedia Commons.

Hidden Figures (book & movie, 2016), the story of a team of
African-American women mathematicians who played a

crucial role at NASA during the early years of the US space
program.
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Numerical analysis

As numerical analysts, we:
analyze the convergence of methods developed by
chemists (is the result satisfactory ?);
estimate the error arising from different sources
(models, discretization, solver tolerance, finite
precision. . . );
try to improve the existing methods (speed,
accuracy, robustness. . . ).

Error bars on the band diagram of silicona.
a M. F. Herbst, A. Levitt and E. Cancès.

A posteriori error estimation for the non-self-consistent
Kohn–Sham equations.
Faraday Discussions, 224:227-246, 2020.
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https://arxiv.org/abs/2004.13549
https://arxiv.org/abs/2004.13549
https://arxiv.org/abs/2004.13549
https://arxiv.org/abs/2004.13549
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1 Introduction

2 Mathematical framework

3 Convergence analysis of direct minimization and SCF iterations – Chapter 2

4 Practical error bounds for quantities of interest – Chapter 3

5 Numerical stability of response property calculations – Chapter 4

6 DFTK and perspectives
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Quantum mechanics of a single electron

In atomic units, with no spin, we look at the PDE in ψ(·, t) ∈ L2(R3)

i∂tψ(x , t) = − 1
2∆ ψ(x , t) + V (x) ψ(x , t) =: ( H0 ψ)(x , t)

kinetic operator potential Hamiltonian

∥ψ(·, t)∥L2(R3) = 1;

stationary states ψ(x , t) = e−iεtφ(x) where{
H0φ = εφ,

∥φ∥L2 = 1;

ground-state energy: ε = min
∥φ∥L2 =1,φ̸=0

⟨φ,H0φ⟩.
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Quantum mechanics of noninteracting electrons

Consider a system of Nel noninteracting electrons:
Pauli exclusion principle ⇝ two electrons cannot be in the same quantum state;
ground-state ⇝ electrons fill the Nel lowest energy states (Aufbau principle).

{
H0φn = εnφn,

⟨φn, φm⟩L2(R3) = δnm,
H0 := −1

2∆ + V .
• ε1

• ε2

...
• εNel

εNel+1

εNel+2

...

E =
Nel∑
n=1

εn is the ground-state energy;

ρ(x) =
Nel∑
n=1

|φn(x)|2 is the ground-state electronic density, with
∫
R3
ρ(x)dx = Nel.
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Numerical resolution

Choose your favorite (orthonormal) discretization basis and then:

Find (φn)1⩽i⩽Nel ∈
(
RNb

)Nel
, s.t. H0φn = εnφn, φT

n φm = δnm, ε1 ⩽ · · · ⩽ εNel .

Orbitals (φn)1⩽i⩽Nel are not unique (degeneracies) ⇝ better to work with the orthogonal projector onto
the space spanned by the orthonormal family (φn)1⩽i⩽Nel :

P∗ :=
Nel∑
n=1

|φn⟩ ⟨φn| =
Nel∑
n=1

φnφ
T
n ∈ RNb×Nb

sym .

P∗ is a rank Nel orthogonal projector (ground-state density matrix);
the ground-state energy then reads

E =
Nel∑
n=1

εn =
Nel∑
n=1

⟨φn|H0φn⟩ = Tr(H0P∗).

P∗ minimizes Tr(H0P) over the set of rank Nel orthogonal projectors.
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We have two equivalent problems:{
H0φn = εnφn,

φT
n φm = δnm,

where ε1 ⩽ · · · ⩽ εNel , are the Nel lowest eigenvalues ⇔ min
P∈MNel

Tr(H0P)

where
MNel :=

{
P ∈ RNb×Nb

∣∣ P = PT , Tr(P) = Nel, P2 = P
}

is the set of rank Nel orthogonal projectors. It is diffeomorphic to the Grassmann manifold
Grass(Nel,Nb).
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General framework
In reality, electrons do interact so that the general
form of the energy is

E(P) := Tr (H0P) + Enl(P)

linear term nonlinear term

P ∈ RNb×Nb
sym is a trial density matrix;

H0 = − 1
2 ∆ + V is the core Hamiltonian;

Enl models the electron-electron interaction
depending on the model chosen to
approximate the N-body Schrödinger equation
(e.g. Kohn–Sham DFT or Hartree–Fock).

Kohn–Sham equations with LDA


(− 1

2 ∆ + Vnuc) φn + VHxc(ρ) φn = εnφn,

⟨φn, φm⟩L2(R3) = δnm,

ρ =
Nel∑
n=1

|φn|2 .

linear term

nonlinear term

(1)
min

P∈MNel

E(P) = Tr (H0P) + Enl(P),

MNel :=
{

P ∈ RNb×Nb
∣∣ P = PT , Tr(P) = Nel, P2 = P

}
.
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The molecular structure of caffeine. Unit cell of Heusler Fe2MnAl alloy1.
Source: https://hpc-wiki.info/hpc/Gaussian

1Y. Jirásková, J. Buršík, D. Janičkovič, O. Životský, Influence of Preparation Technology on Microstructural and Magnetic
Properties of Fe2MnSi and Fe2MnAl Heusler Alloys. Materials, 12(5):710-723, 2019).

Gaspard Kemlin CERMICS & Inria Numerical analysis for electronic structure calculations PhD defense, December 15th 2022 16 / 52

https://hpc-wiki.info/hpc/Gaussian
https://www.mdpi.com/1996-1944/12/5/710
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The broader picture

Assume that we want to find x∗ such that f (x∗) = 0 for some function f : RN → RN . Let J(x) be the
Jacobian of f at x .

Convergence analysis (Chapter 2): the behavior of x k+1 = x k + βf (x k) depends on 1 + βJ(x∗).
Error control (Chapter 3): x − x∗ ≈ J(x∗)−1f (x).
Response calculations (Chapter 4): if f depends on a parameter ε, then the solution to
f (x∗(ε), ε) = 0 satisfies

∂x∗

∂ε

∣∣∣
ε=0

= −J(x∗(0))−1 ∂f
∂ε

∣∣∣
ε=0

.

Here, we have a constrained minimization problem: f ∼ ∇E and we need to define the correct
framework to compute the Jacobian J(x∗) with x∗ on the manifold MNel (Chapter 2).
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Some definitions

H :=
(
RNb×Nb

sym , ∥·∥F

)
, endowed with the Frobenius scalar product Tr(AT B);

MNel is a smooth manifold, we can define its tangent space TPMNel (it is a R vector space);
ΠP is the orthogonal projection on TPMNel :

ΠP(X) = PX(1− P) + (1− P)XP;

In the decomposition H = Ran(P)⊕ Ran(1− P), we have:

P =
[

1Nel 0
0 0

]
and TPMNel :=

{
X =

[
0 ×T

× 0

]}
;

H(P) := ∇E(P) and K(P) := ΠP∇2E(P)ΠP .
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R : H →MNel is a retraction s.t.

R(P + δP) = P + ΠPδP + O(δP2) for P ∈MNel .

MN

TPMN

ΠP

δP
P
•

R
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min
P∈MNel

E(P) = Tr (H0P) + Enl(P),

MNel :=
{

P ∈ H
∣∣ Tr(P) = Nel, P2 = P

}
.

Assumption 1 Enl : H → R is twice continuously differentiable, and thus so is E .

Assumption 2 P∗ ∈MNel is a nondegenerate local minimizer in the sense that there exists some
η > 0 such that, for P ∈MNel in a neighbourhood of P∗, we have

E(P) ⩾ E(P∗) + η ∥P − P∗∥2
F.

Let H∗ := H(P∗) and K∗ := K(P∗).
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First-order condition

min
P∈MNel

E(P) = Tr (H0P) + Enl(P)

The first-order optimality condition is ΠP∗ (H∗) = 0, which gives

P∗H∗(1− P∗) = (1− P∗)H∗P∗ = 0.

MNel

TP∗MNel

−H∗

−H∗

E ↘
P∗
•
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First-order condition

min
P∈MNel

E(P) = Tr (H0P) + Enl(P)

The first-order optimality condition is ΠP∗ (H∗) = 0, which gives

P∗H∗(1− P∗) = (1− P∗)H∗P∗ = 0.

[H∗,P∗] = 0 ⇒ H∗ and P∗ can be
codiagonalized;
if (φi )1⩽i⩽Nb is an o.n.b. of eigenvectors of H∗
ordered by nondecreasing eigenvalues, then
P∗ =

∑
i∈occ φiφ

T
i , with occ the set of

occupied orbitals;
occ ⊂ {1, . . . ,Nb} and |occ| = Nel:

occ = {1, . . . , Nel}: Aufbau principle;
occ = {1, . . . , Nel} and εNel < εNel+1: strong
Aufbau principle.

In the decompositionH = Ran(P∗)⊕Ran(1−P∗),
assuming the Aufbau principle

H∗ =


← occ → occ
ε1

. . . 0
εNel

0
. . .

, P∗ =
[occ occ

1Nel 0
0 0

]
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Second-order condition

min
P∈MNel

E(P) = Tr (H0P) + Enl(P)

The second-order optimality condition reads

∀ X ∈ TP∗MNel , ⟨X , (Ω∗ + K∗)X⟩F ⩾ η ∥X∥
2
F .

Recall K∗ = ΠP∗∇2E(P∗)ΠP∗ ;
the operator Ω∗ : TP∗MNel → TP∗MNel is defined by,

∀ X ∈ TP∗MNel , Ω∗X := −[P∗, [H∗,X ]].

Ω∗ + K∗ can be interpreted as the Hessian of the energy on the manifold, Ω∗ represents the
influence of the curvature. Can also be seen as the Hessian of the Lagrangian.
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Proof: Let X ∈ TP∗MNel , I be a real interval containing 0 and
γ : I →MNel be a smooth path such that γ(0) = P∗ and γ̇(0) = X .

E (γ(t)) = E(P∗) + t ⟨H∗,X⟩F

+ t2

2

(
⟨H∗, γ̈(0)⟩F +

〈
X ,∇2E(P∗)X

〉
F

)
+ o(t2)

= E(P∗) + t2

2

(
⟨H∗, γ̈(0)⟩F + ⟨X ,K∗X⟩F

)
+ o(t2)

γ̈(0) is unknown, but differentiating γ(t)2 = γ(t) at t = 0, we get

P∗γ̈(0) + γ̈(0)P∗ + 2X 2 = γ̈(0),

MNel

TP∗MNel

γ̈(0)

H∗
Π⊥

P∗ γ̈(0)

X = γ̇(0)

P∗•

from which we obtain
1
2Pγ̈(0)P = −PX(1− P)XP, 1

2(1− P)γ̈(0)(1− P) = (1− P)XPX(1− P).

After some algebra,

⟨H∗, γ̈(0)⟩F = Tr
(

X(Ω∗X)
)

where Ω∗X = −[P∗, [H∗,X ]].
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Structure of Ω∗

Let (φi , εi )1⩽i⩽Nb be an eigendecomposition of H∗. Then
for i ∈ occ and a /∈ occ

(Ω∗X)ia = (εa − εi )Xia and (Ω∗X)ai = (εa − εi )Xai ;

the gap mina /∈occ εa −maxi∈occ εi is the smallest eigenvalue of Ω∗.

Remark: if the Aufbau principle is satisfied, then the gap is εNel+1 − εNel .
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The broader picture

With R(P) = ΠP∇E(P) and P∗ such that R(P∗) = 0 we then have:
Convergence analysis (Chapter 2): the behavior of Pk+1 = Pk − βR(Pk) depends on
1− β(Ω∗ + K∗).
Error control (Chapter 3): P − P∗ ≈ (Ω∗ + K∗)−1R(P).
Response calculations (Chapter 4): if R depends on a parameter ε, then the solution to
R(P∗(ε), ε) = 0 satisfies

∂P∗

∂ε

∣∣∣
ε=0

= −(Ω∗ + K∗)−1 ∂R
∂ε

∣∣∣
ε=0

.
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Solving problem (1)

Problem Iterative method
Eigenvalue problem Gradient descent, Lanczos, LOBPCG

SCF (nonlinear eigenvalue problem) Damping, Anderson acceleration, DIIS
Direct minimization Projected gradient descent, CG, LBFGS

Each iterative method has already been analyzed in the literature ⇝ compare simplest representative
of each class.
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Projected gradient descent

Solve directly (1) with a projected gradient algorithm:

MNel

TPkMNel

δP = −∇E(Pk) = −H(Pk)

ΠPk (δP)

Pk
•

Pk+1
•
R

Data: P0 ∈MNel
while convergence not reached do

Pk+1 := R
(
Pk − βΠPk∇E(Pk)

)
;

end
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Convergence of projected gradient descent

Theorem (Classical result)

Let E : H → R satisfy Assumptions 1 and 2 with P∗ a local minimizer of (1). Then, if P0 ∈MNel is
close enough to P∗, the iterations

Pk+1 := R
(
Pk − βΠPk∇E(Pk)

)
linearly converge to P∗ for β > 0 small enough, with asymptotic rate the spectral radius of 1− βJgrad
where Jgrad := Ω∗ + K∗.

⇝ in the linear case K∗ = 0 and the spectral radius depends only on ∥Ω∗∥op = εNb − ε1 →∞ when
Nb →∞: known conditioning issues for gradient descents.
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Euler–Lagrange equations

Take the constrained minimization problem on MNel

inf
P∈MNel

E(P) = Tr (H0P) + Enl(P).

Recall linear case

E(P) = Tr(H0P)

↓
linear eigenvalue problem

H0φn = εnφn
φT

n φm = δnm,

P =
Nel∑
n=1

φnφT
n

Nonlinear case

E(P) = Tr(H0P) + Enl(P)

↓
nonlinear eigenvalue problem
(H0 + ∇Enl(P))φn = εnφn,

φT
n φm = δnm,

P =
Nel∑
n=1

φnφT
n .
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Self-consistent field (SCF)

This leads to consider the following iterations:
Set a starting point P0 ∈MNel ;

solve the linear eigenvalue problem for H(Pk) = H0 +∇Enl(Pk):
{

H(Pk)φk
n = εk

nφ
k
n ,

(φk
n)Tφk

m = δnm,

build the density matrix Pk+1 =
Nel∑
n=1

φk
n(φk

n)T ;

solve the linear eigenvalue problem for H(Pk+1), and so on until convergence.

Theorem (quadratic case, Cancès & Le Bris ’00, Levitt ’12)

The sequence
(
Pk)

k∈N
generated by this algorithm satisfies one of the two following properties:

either
(
Pk)

k∈N
converges to an Aufbau solution to the HF equations;

or
(
Pk)

k∈N
oscillates between two states, none of them being an Aufbau solution to the HF

equations.
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Damped SCF

Damped SCF algorithm, assuming the strong Aufbau principle:

MNel

TPkMNel

A(Pk) =
Nel∑
i=1

φk
i (φk

i )T•

Pk • Pk+1
•R

Data: P0 ∈MNel
while convergence not reached do

solve
{

H(Pk)φk
n = εk

nφ
k
n , εk

1 ⩽ · · · ⩽ εk
Nel < εk

Nel+1

(φk
n)Tφk

m = δnm,
;

Pk+1 := R
(
Pk + βΠPk

(
A(Pk)− Pk))

;
end
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Damped SCF

Damped SCF algorithm, assuming the strong Aufbau principle:

MNel

TPkMNel

A(Pk) =
Nel∑
i=1

φk
i (φk

i )T•

Pk • Pk+1
•R

Data: P0 ∈MNel
while convergence not reached do

solve
{

H(Pk)φk
n = εk

nφ
k
n , εk

1 ⩽ · · · ⩽ εk
Nel < εk

Nel+1

(φk
n)Tφk

m = δnm,
;

Pk+1 := R
(
Pk + βΠPk

(
A(Pk)− Pk))

;
end
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Convergence of damped SCF

Theorem (Cancès, Kemlin & Levitt ’21)

Let E : H → R satisfy Assumptions 1 and 2 with P∗ a local minimizer of (1). Assume that P∗ satisfies
the strong Aufbau principle

A(P∗) = P∗and ν := εNel+1 − εNel > 0.

Then, for β > 0 small enough and P0 ∈MNel close enough to P∗, the iterations

Pk+1 := R
(
Pk + βΠPk

(
A(Pk)− Pk))

linearly converge to P∗, with asymptotic rate the spectral radius of 1− βJSCF where
JSCF := 1 + Ω−1

∗ K∗.

⇝ consistent with the linear case K∗ = 0 for which we have a linear eigenvalue problem H0φn = εnφn:
the SCF converges in one iteration.
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What did we learn ?

Both algorithms have Jacobian matrices of the form
1− βJ with

Gradient descent: Jgrad = Ω∗ + K∗ is sensitive
to the spectral radius of H∗;
SCF: JSCF = 1 + Ω−1

∗ K∗ is sensitive to the
gap.

Problem matrix
Linear eigenvalue problem Ω∗

Damped SCF 1 + Ω−1
∗ K∗

Gradient Descent Ω∗ + K∗

Hence
in the linear regime, the SCF can be seen as a matrix splitting method for the gradient descent;
the smaller the gap, the more difficult the convergence of the SCF (known issue for chemists);
in practice, the choice depends on the convergence rate but also on the cost of each step which
depends on the context (quantum chemistry vs condensed matter).

E. Cancès, G. Kemlin, and A. Levitt. Convergence Analysis of Direct Minimization and Self-Consistent
Iterations. SIAM Journal on Matrix Analysis and Applications, 42(1):243-274, 2021.
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Error control in the literature

Error control for eigenvalues of linear operators is already well established: initially in the 50s (e.g.
Kato–Temple bound, Forsythe (1954), Weinberger (1956), Bazley and Fox (1961)), then recent progress in the
past decades for elliptic operators with the FEM (see e.g. Hu, Huang, Lin and Shen (2014), Larson (2000),
Liu (2015)).
Recent progress for the particular case of electronic structure (see works by Cancès, Dusson, Maday,
Stamm, Vohralík, Levitt, Herbst. . . ).
For nonlinear models, a few results exist, but mainly for simple models (e.g. Gross–Pitaevskii, see Maday
and Dusson (2017), see also Chen, He and Zhou (2011)).
Error control can be used to design adaptive methods (see Dai, Pan, Yang and Zhou (2021) for linear
eigenvalue problems with plane-wave discretization or Liu, Chen, Dusson, Fang and Gao (2022) for a recent application to
Kohn–Sham models).
No results on error control for quantities of interest.

⇝ We focus here on providing error estimates for generic nonlinear models (e.g. Kohn–Sham DFT)
and for quantities of interest (e.g. forces).
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Linearization

Recall that Ω∗ + K∗ is the Jacobian of P 7→ R(P) = ΠPH(P) at P∗. Thus, at first order in ∥P − P∗∥2
F,

ΠPH(P) ≈ ΠP∗ H∗ + (Ω∗ + K∗)(P − P∗).

As ΠP∗ H∗ = 0, with R(P) the residual,

ΠP(P − P∗) ≈ (Ω∗ + K∗)−1R(P)

For quantity of interest F (P):

|F (P)− F∗| ⩽ ∥dF (P∗)∥op

∥∥(Ω∗ + K∗)−1∥∥
op
∥R(P)∥F .
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Error on the forces for a silicon crystal: Ecut defines the plane-wave variational approximation space.
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Replace the error F (P)−F∗ by dF (P)·(ΠP(P−P∗)).

⇝ Good, but not usable in practice (P∗ is unknown).

Replace P −P∗ by M−1R(P), with M ∼ − 1
2 ∆ + 1.

⇝ Better, but still not satisfying.
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Frequency splitting

Let P ∈MNel , then TPMNel can be split into low and high frequencies:

TPMNel = ΠEcutTPMNel ⊕ Π⊥
EcutTPMNel .

low frequencies high frequencies

If P is a solution of the variational problem for a given Ecut, then R(P),M−1R(P) ∈ Π⊥
EcutTPMNel .

0 2,000 4,000 6,000 8,000

0

0.2

0.4

0.6

0.8

1

·10−6

index of G by increasing norm

M−1
1 r1

0 2,000 4,000 6,000 8,000

0

0.2

0.4

0.6

0.8

1

·10−6

index of G by increasing norm

e1

0 2,000 4,000 6,000 8,000

0

0.5

1

1.5

2

index of G by increasing norm

(1− P )
∂Vloc

∂Xj,α
ϕ1

⇝ dF (P) is mainly supported on low frequencies.
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Enhanced error bounds

We decompose the error/residual relation onto ΠEcutTPMNel ⊕ Π⊥
EcutTPMNel to get[

(Ω + K)11 (Ω + K)12
(Ω + K)21 (Ω + K)22

] [
P1 − P∗1
P2 − P∗2

]
=

[
R1
R2

]
.

As the kinetic energy is dominating for high-frequencies, we approximate

(Ω + K)21 ≈ 0 and (Ω + K)22 ≈M22,

and thus [
(Ω + K)11 (Ω + K)12

0 M22

] [
P1 − P∗1
P2 − P∗2

]
=

[
R1
R2

]
.

This yields a new residual, which requires only an inversion on the coarse grid (M22 being easy to
invert):

RSchur(P) =
[

(Ω + K)−1
11 (R1 − (Ω + K)12 M−1

22 R2)
M−1

22 R2

]
.
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What did we learn ?

The asymptotic regime is quickly established;
error estimates based on operator norms are not good;
using a Schur complement to couple high and low frequencies clearly enhances the approximation
of the error;
we can either compute error bounds or enhance the accuracy of the QoI;
similar results are observed for more sophisticated systems.
Limits: we do not have guaranteed bounds, but useful in practice, valid asymptotically and for a
cost comparable to a SCF cycle (solving Ω + K).

E. Cancès, G. Dusson, G. Kemlin, and A. Levitt. Practical error bounds for properties in plane-wave
electronic structure calculations. SIAM Journal on Scientific Computing, 44(5):B1312-B1340, 2022.
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Response calculations

DFT is useful to compute ground-state properties, but most of quantities of interest depend on the
response of the system to an external perturbation (polarizabilities, magnetic susceptibilities,
phonons. . . ) ⇝ DFPT.

Assume δH is an external perturbation and let P(ε) solve R(P, ε) := ΠP(H(P) + εδH) = 0. Then

∂P
∂ε

∣∣∣
ε=0

= −J(P(0))−1 ∂R
∂ε

∣∣∣
ε=0

.

Recall that J(P(0)) = Ω∗ + K∗ and with δP = ∂P
∂ε

∣∣∣
ε=0

, we obtain

δP = −(Ω∗ + K∗)−1δH ⇔ δP = (1− χ0K∗)−1χ0δH

where χ0 = −Ω−1
∗ is the 4 points independent-particle susceptibility operator2.

⇝ Efficient computations of δP = χ0δH are required.
2S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional

perturbation theory. Reviews of Modern Physics, 73(2):515–562, 2001.
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Insulators and semi-conductors

P, δP are not tractable, in practice we use orbitals:

P =
Nel∑
n=1

|φn⟩ ⟨φn|

δP =
Nel∑
n=1

|φn⟩ ⟨δφn|+ |δφn⟩ ⟨φn|

with (δφn)1⩽n⩽Nel uniquely defined under the con-
straint ⟨φm, δφn⟩ = 0 for any n,m. Then, with
Q = 1 − P, applying χ0 leads to the resolution of
the Sternheimer equation

Q(H∗ − εn)Qδφn = −QδHφn, ∀ n = 1, . . . ,Nel.

⇝ Positive gap makes it easy for insulators and semi-
conductors.
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Metals

Different context: introduce numerical temperature to ensure convergence

P =
Nb∑

n=1

fn |φn⟩ ⟨φn| ≈
N∑

n=1

fn |φn⟩ ⟨φn| with fn = fFD

(
εn − εF

T

)
∈ [0, 1].

×× ×××
1

×+
εF
× ××× ××

N
×× ×××

fFD
(

ε−εF
T

)

Again, in practice we use orbitals: δP =
N∑

n=1

fn(|φn⟩ ⟨δφn|+ |δφn⟩ ⟨φn|) + δf n |φn⟩ ⟨φn|.

⇝ No uniqueness: gauge choices have to be made.
⇝ How to define Ω∗ in this context ? Via χ0!
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First, charge conservation (Tr(δP) = 0) helps choos-
ing δf n. Then, for all n = 1, . . . ,N:

fnδφn = fnδφ
P
n + fn δφ

Q
n

sum-over-states formula Sternheimer equation

fnδφ
P
n =

∑N
n=1 Γmnφm wherea

Γmn + Γnm = fn − fm

εn − εm
⟨φm, δHφn⟩ .

δφQ
n solves

Q(H∗ − εn)QδφQ
n = −QδHφn

⇝ Possibly very ill-conditioned: Schur
complement with Nex discarded orbitals to
solve a better conditioned system.

aWe use the convention
(fn − fn)/(εn − εn) = 1

T f ′
FD((εn − εF)/T ) =: f ′

n .
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Resolution of the Sternheimer equation for Heusler compounds.

Fe2MnAl: More than 40% less Hamiltonian applications in total.
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What did we learn ?

Insulators are easy: δφn ∈ Span(φm)N+1⩽m and the Sternheimer equation is usually
well-conditioned;
metals are more difficult: δφn = δφP

n + δφQ
n

δφP
n requires a gauge choice and we derived a common framework from the literature which ensures

numerical stability (computational time is negligible);
δφQ

n solves the ill-conditioned Sternheimer equation in Span(φm)N+1⩽m and we enhanced its
resolution through a Schur complement. Numerical experiments give satisfying results, even for
challenging systems.

E. Cancès, M. F. Herbst, G. Kemlin, A. Levitt, and B. Stamm. Numerical stability and efficiency of
response property calculations in density functional theory. arXiv:2210.04512, 2022.
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DFTK

Main contributions:
implementation of a Newton solver thanks to the linearization of the KS equations;
developments of error estimators for interatomic forces;
implementation of a framework to perform response calculations, a cornerstone to the use of
Automatic Differentiation in DFTK.
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Perspectives

Insulators are well understood now.
For metals, the situation is more challenging and possible future works include:

comparing direct minimization and SCF;
extending error control for forces to finite temperature systems;
combining Chapters 3 and 4 to derive error estimates for properties that require response calculations;
choosing the appropriate number of extra bands to perform SCF and response calculations with
metals.

Designing adaptive methods using the tools developed for error control.
More generally, the a posteriori numerical methods we proposed require to set different parameters
(e.g. two-grids methods) whose choice is mainly empirical at the moment. Understanding how to
optimize these parameters would be of high interest for practical applications.

Thanks for your attention !
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