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A posteriori error estimation for linear models

For A self-adjoint, bounded-below and with Goals:

compact resolvent, we consider the following
infinite dimensional eigenvalue problem and its

Galerkin approximation in the finite dimensional
space Vy (e.g. planewaves, FE, LCAO...):

Au = M\u,
ul] =1,

_|/\/A|_|/\/U/\/ — )\/\/U/\/,

luyl| = 1.

Residual analysis

res(u/\/, )\/\/) — AU/\/ — )\/\/U/\/

N € R, is the discretization parameter:

= Au — Au = 0.
o Approximate solution: res(wuy, Ay) # 0.

o Exact solution: res(u, \)

Error estimates for nonlinear models

Generic DFT model: min E(v) =

yeEMu,

Mu = {5 € SW), Rono) € H(R). 7' =7 =7 Ter) = Ne'}'

N,
Z pilx

v =)l (@i, and ps(x
Euler-Lagrange/Kohn—Sham equatlons ~+ nonlinear eigenvalue problem:

Tr(hy) + F(p,) where

=1

H, oi = €ipi (HNHpVN’mnN) PiN,m = Ei,N,mPi,N,m
(i j) = 0 SCF algorithm | (i M.y @) N.m) = O

Ne discretization ' N
V= Z i) (@il YN, m+1 = Z ©iN,m) (i N,

=1 i=1

Here, H, = h+ V, with h = —%A +Vand V, = 5’;—?) (= Hartree 4 xc).

Theorem

At iteration m of the SCF in V), it holds, for v, a minimizer and under a
gap condition (= insulator or semi-conductor):

E(yw,m) — E(7,) < erriyys + erriyy,

err?\,lfnc

— UN m+1)7N,m+1)
erri®, = Tr (Hyy wm) — T (Hyy e

with ty me1 @ computable constant, that depends on the gap and the dual
norm of the residuals.

Difficulties:

e Nonlinearity of the energy functional: the theorem is valid under the
condition that F is convex.

e Cluster of eigenvalues: residual is the sum of the individual residuals.

® 1ty ma1 is obtained by applying a (1)-like formula for clusters of
eigenvalues applied to A = Hp,w ~+ dual norms require to solve linear
systems at every step of the SCF ! In practice, inexact solve of these linear

systems still gives satisfactory (but nonguaranteed) results.

Comments:

e errdisc 5 0 as N — 400 provided that the discretization is well chosen.
N m P

SCF

eerry’/, — 0 as m — +oo provided that the SCF algorithm converges.

e Guaranteed (upper bound on the error |\ — \py|).

o Efficient (close to the error)

. . C | | \
o Cheap (no more than the cost to get Ay). ol
o Adaptive (highlights different contributions). 00|

Existing bounds for linear problems:
o Bauer-Fike (60's): |\ — Ay| < |[res(uy, An)l.

e More recently (2020)?, fully guaranteed bound

, res(uy Ay) |2
o Kato—Temple (50's): |\ — Apy| < H (g’;p mI” \
A — Ay < IA~Y2res(uy, M) || (1)

(res(up, An), A~ res(up, Ay)) =: dual norm

Y e N

+ 2)\NC/\_/1HA_1I’GS(U/\/, )\/\/)‘ :

with Cy a computable, gap dependent, constant.
°E. Cances, G. Dusson, Y. Maday, B. Stamm, and M. Vohralik.

Guaranteed a posteriori bounds for eigenvalues and eigenvectors:
Multiplicities and clusters, Mathematics of Computation (2020).
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—2A + V. (Top) Only the

fully guaranteed one and the dual norm are satisfying.

Figure 1: Example for A =

(Bottom) Zoom: the dual norm is not an upper bound.

Application to 3D materials with DFTK. j1

e Silicon cristal, k-grid 2 x 2 x 2.

*Vy = Span {eg, |G| < N} Wlth G
Fourier modes (= planewaves) @ DFTK E—%
O Lyt = 150 Ha Ecut ref — 400 Ha

https://dftk.org

// - dxdy (no xc).
QxQ |X )/|

A+c) - (i)

cheap to inverse in planewaves (diagonal) and (ii) only high frequencies

N = v/2Ecu: Vi, = V& Vy and
residuals € Vy; (high frequencies).

rHF, with F(p

e Convex model:

o Dual norms are computed by approximating A~ ~ (

needed when acting on the residual, where the Laplacian dominates.
Results are not guaranteed anymore but still gives very satistying bounds.

e We can track the error on the energy, with a splitting between
discretization error and SCF error: the transition from a SCF-dominating
error to a discretization-dominating error clearly appears.

o Very good results for LDA and PBE functionals (even though nonconvex).
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Figure 2: Error control on the energy along the SCF iterations for the rHF model (left,
convex F) and the LDA model (right, nonconvex F).

Perspectives and references

e Other discretizations
than planewaves.

» Metallic systems (no gap). e Adaptive schemes.

e Error on the density. e Nonconvex models.

All details (proofs, definition of uy .1, code) available online:

A. Bordignon, E. Cances, G. Dusson, G. Kemlin, R.A. Lainez Reyes, B.

Stamm. Fully guaranteed and computable error bounds on the energy for
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