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A posteriori error estimation for linear models

For A self-adjoint, bounded-below and with
compact resolvent, we consider the following
infinite dimensional eigenvalue problem and its
Galerkin approximation in the finite dimensional
space VN (e.g. planewaves, FE, LCAO. . . ):{

Au = λu,
∥u∥ = 1,

and
{
ΠNAΠNuN = λNuN,
∥uN∥ = 1.

Residual analysis

res(uN, λN) = AuN − λNuN

N ∈ R+ is the discretization parameter:
• Exact solution: res(u, λ) = Au − λu = 0.
• Approximate solution: res(uN, λN) ̸= 0.

Goals:
• Guaranteed (upper bound on the error |λ − λN|).
• Efficient (close to the error).
• Cheap (no more than the cost to get λN).
• Adaptive (highlights different contributions).
Existing bounds for linear problems:
• Bauer–Fike (60’s): |λ − λN| ≤ ∥res(uN, λN)∥.
• Kato–Temple (50’s): |λ − λN| ≤ ∥res(uN ,λN)∥2

gap .
• More recently (2020)a, fully guaranteed bound:

|λ − λN| ≤

= ⟨res(uN , λN), A−1res(uN , λN)⟩ =: dual norm︷ ︸︸ ︷
∥A−1/2res(uN, λN)∥2

+ 2λNC−1
N ∥A−1res(uN, λN)∥2,

(1)

with CN a computable, gap dependent, constant.
aE. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralik.

Guaranteed a posteriori bounds for eigenvalues and eigenvectors:
Multiplicities and clusters, Mathematics of Computation (2020).
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Figure 1: Example for A = −1
2∆ + V . (Top) Only the

fully guaranteed one and the dual norm are satisfying.
(Bottom) Zoom: the dual norm is not an upper bound.

Error estimates for nonlinear models

Generic DFT model: min
γ∈MNel

E (γ) := Tr(hγ) + F (ργ) where

MNel :=
{

γ ∈ S(L2
#(Ω)), Ran(γ) ⊂ H1

#(Ω), γ∗ = γ = γ2, Tr(γ) = Nel

}
,

γ =
Nel∑
i=1

|φi⟩⟨φi|, and ργ(x) =
Nel∑
i=1

|φi(x)|2.

Euler–Lagrange/Kohn–Sham equations ⇝ nonlinear eigenvalue problem:
Hργ

φi = εiφi

⟨φi , φj⟩ = δij

γ =
Nel∑
i=1

|φi⟩⟨φi|

SCF algorithm−−−−−−−→
discretization



(
ΠNHργN ,m

ΠN

)
φi ,N ,m = εi ,N ,mφi ,N ,m

⟨φi ,N ,m, φj ,N ,m⟩ = δij

γN ,m+1 =
Nel∑
i=1

|φi ,N ,m⟩⟨φi ,N ,m|

Here, Hρ = h + Vρ with h = −1
2∆ + V and Vρ = δF (ρ)

δρ (= Hartree + xc).

Theorem
At iteration m of the SCF in VN, it holds, for γ⋆ a minimizer and under a
gap condition (= insulator or semi-conductor):

E (γN ,m) − E (γ⋆) ≤ errdisc
N ,m + errSCF

N ,m

errdisc
N ,m = Tr

(
(HργN ,m

− µN ,m+1)γN ,m+1
)

errSCF
N ,m = Tr

(
HργN ,m

γN ,m
)

− Tr
(
HργN ,m

γN ,m+1
)

with µN ,m+1 a computable constant, that depends on the gap and the dual
norm of the residuals.

Difficulties:
• Nonlinearity of the energy functional: the theorem is valid under the

condition that F is convex.
• Cluster of eigenvalues: residual is the sum of the individual residuals.
• µN ,m+1 is obtained by applying a (1)-like formula for clusters of

eigenvalues applied to A = HργN ,m
⇝ dual norms require to solve linear

systems at every step of the SCF ! In practice, inexact solve of these linear
systems still gives satisfactory (but nonguaranteed) results.

Comments:
• errdisc

N ,m → 0 as N → +∞ provided that the discretization is well chosen.
• errSCF

N ,m → 0 as m → +∞ provided that the SCF algorithm converges.

Application to 3D materials with DFTK.jl

• Silicon cristal, k-grid 2 × 2 × 2.
• VN = Span {eG, |G| ≤ N} with eG

Fourier modes (= planewaves).
• Ecut = 150 Ha, Ecut,ref = 400 Ha.
• N =

√
2Ecut: VNref = VN ⊕ V⊥

N and
residuals ∈ V⊥

N (high frequencies).

DFTK
https://dftk.org

• Convex model: rHF, with F (ρ) = 1
2

∫∫
Ω×Ω

ρ(x)ρ(y)
|x − y |

dxdy (no xc).

• Dual norms are computed by approximating A−1 ≈
(

− 1
2∆ + c

)−1: (i)
cheap to inverse in planewaves (diagonal) and (ii) only high frequencies
needed when acting on the residual, where the Laplacian dominates.
Results are not guaranteed anymore but still gives very satisfying bounds.

• We can track the error on the energy, with a splitting between
discretization error and SCF error: the transition from a SCF-dominating
error to a discretization-dominating error clearly appears.

• Very good results for LDA and PBE functionals (even though nonconvex).

Figure 2: Error control on the energy along the SCF iterations for the rHF model (left,
convex F ) and the LDA model (right, nonconvex F ).

Perspectives and references

• Metallic systems (no gap).
• Error on the density.

• Adaptive schemes.
• Nonconvex models.

• Other discretizations
than planewaves.

All details (proofs, definition of µN ,m+1, code) available online:
A. Bordignon, E. Cancès, G. Dusson, G. Kemlin, R.A. Lainez Reyes, B.

Stamm. Fully guaranteed and computable error bounds on the energy for
periodic Kohn-Sham equations with convex density functionals (2024).
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