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Research goal
The Gross–Pitaevskii (GP) equation plays a central role
in various models of superfluids and condensed mat-
ter physics. A dominating feature is the occurrence of
quantized vortices that effectively evolve according to
a Hamiltonian system in the limit of point-like vortices.
The project aims at placing the well-developed analytical
theory of this singular limit in a computational frame-
work that allows to prove accuracy and efficiency of nu-
merical approximations throughout the vortex regime.

Model
The time-dependent GP equation is a fundamental tool
to model and understand superfluids. It reads, for given
ε > 0 and boundary conditions g : ∂Ω → S1 on a
bounded domain Ω ⊂ R2,i∂ψε

∂t
= ∆ψε + 1

ε2(1 − |ψε|2)ψε in Ω,

ψε(·, t) = g on ∂Ω and ψε(·, 0) = ψ0
ε.

(1)

ψε : Ω×R+ → C ' R2 is called the wave function and
|ψε|2 represents the density of the superfluid.

Background
We are interested here in the behavior of the solutions
in the singular limit ε → 0. A striking feature is the
occurrence of quantized vortices that evolve, in the
limit ε → 0, according to Hamiltonian dynamics [3].
These vortices correspond to isolated zeroes of ψε with
nonzero winding numbers (or degree). In [6], the au-
thors consider a sequence of initial conditions (ψ0

ε)ε>0
made of “almost vortices”, in the sense that the vor-
ticity J(ψ0

ε) = det∇ψ0
ε converges, when ε → 0, to

a sum of N Dirac masses, representing vortices loca-
tions X0 = (x0

j)j=1,...,N ∈ ΩN with winding numbers
d = (dj)j=1,...,N = (±1)j=1,...,N . More precisely, ψ0

ε is
required to satisfy, for some C > 0 and α ∈ (0, 1),

∀ ε small enough,∥∥∥J(ψ0
ε) − π

∑
16j6N

djδx0
j

∥∥∥
Ẇ−1,1

6 Cεα,

where the Ẇ−1,1 norm is dual to the Lipschitz norm.
The main result of [6] is then that the same kind
of estimates hold for J(ψε(·, t)) and vortex locations
X(t) = (xj(t))j=1,...,N ∈ ΩN , where xj solves the fol-
lowing Hamiltonian ODE:ẋj(t) = −1

π
djJ∇xj

W (X(t), d),

xj(0) = x0
j,

(2)

where J =
(

0 1
−1 0

)
.

Here W : ΩN×{±1}N → R is the renormalized energy
introduced in [2].

The renormalized energy

W (X, d) = − π
∑

16j 6=i6N

didj log |xj − xi|

+ boundary terms

is the limit of Eε(uε) − N(π log 1/ε + γ). Here, γ
is a universal constant introduced in [2] and uε is a
minimizer of the energy conserved by (1):

Eε(u) =
∫

Ω

1
2
|∇u|2 + 1

4ε2(1 − |u|2)2.

W can be seen as the Γ-limit of Eε minus the self-energy
of N vortices of degree ±1.

Objectives and questions so far

• At the (continuous) PDE level:
– How to set up numerically well-prepared initial

conditions?
– How to localize the vortices?
– How to extend the estimates in [6] at the com-

putational level?
• At the (discrete) Hamiltonian level:

– How to simulate efficiently the Hamiltonian dy-
namics?

– Can we recover an approximation of the solution
for ε small but finite from the vortex locations
X(t) evolving according to (2)?

Well-prepared initial conditions
Well-prepared initial conditions can be set up from the
ansatz for a single vortex f (r)eiθ and using [6, Lemma
14]. By inserting this ansatz in (1), we see that fε,r0

has to solve the following ODE, for a given r0 > 0,
1
r

(
rf ′

ε,r0
(r)

)′ − d2

r2fε,r0(r)

+ 1
ε2

(
1 − |fε,r0(r)|2

)
fε,r0(r) = 0,

with boundary conditions fε,r0(0) = 0 and fε,r0(r0) = 1.

fε,r0 for various ε.

Then, define

ψ0
ε(x) = eiH(x)

N∏
j=1

fε,r0(|x − x0
j|)eidjθ(x−x0

j),

where H is some smooth harmonic function and θ(x =
(x, y)) = arg(x + iy). Finally, set accordingly

g(x) = eiH(x)ei
∑

j djθ(x−x0
j)

so that ψ0
ε satisfies the boundary conditions. Note that

g : ∂Ω → S1 has winding number
∑

j dj. ψ0
ε can be

seen as a smoothing of the harmonic map ψ? : Ω → S1

with singularities at locations X0 with winding numbers
d:

ψ?(x) = eiH(x)ei
∑

j djθ(x−x0
j).

Localizing the vortices
Here is a simple algorithm, inspired from [4, 7], to locate
the vortices of a wave function ψ on a triangular finite
element mesh Th with mesh size h.
1. Compute the winding number of all the cells using the

discrete winding number formula:

∀ K ∈ Th, w(K) = 1
2π

3∑
i=1

θ(ψ(ai−1), ψ(ai)),

where a1,a2,a3 = a0 are the three vertices of the
cell K and θ(x,y) = θ(y) − θ(x). Build the list
Lcells of cells that have nonzero winding number.

2. For all cells in Lcells, compute the approximate loca-
tion of the vortex using barycentric coordinates.

Then, such an algorithm localizes the vortices of ψ0
ε with

accuracy h2.

Some simulations of the PDE
Test case from [1]: vortices with identical winding num-
bers and ε = 0.03, Ω = [−1, 1]2. We used the FEM and
a mesh with size h = 7.5 · 10−3. The time integration
is done with a Strang splitting and δt = 5 · 10−5.

Hamiltonian dynamics simulation
Solving the Hamiltonian system (2) requires to compute
the gradient of the renormalized energyW . This implies
solving a harmonic equation at each time step, where
only the boundary conditions change. This can be done
efficiently using an orthonormal basis of ∂Ω, such as har-
monic polynomials. This makes it possible to generate
vortex trajectories in a few seconds (v.s. several hours
for the resolution of the PDE above with the FEM). The
plots were generated using a RK4 explicit scheme with
δt = 10−3 and harmonic polynomials up to degree 50.

Connections with other projects
In the past few years, progress has been made regarding
the simulation of Hamiltonian dynamics with the help of
machine learning and physics-enhanced neural networks
[5, 8, 9]. Investigating this within the CRC in order to
learn the Hamiltonian dynamics (2) from data obtained
with the efficient solver we have set up so far is an
interesting opportunity to connect with other projects.

References
[1] W. Bao and Q. Tang. Numerical Study of Quantized Vortex Interactions in the Non-

linear Schrödinger Equation on Bounded Domains. Multiscale Modeling & Simulation,
12(2):411–439, 2014.

[2] F. Bethuel, H. Brezis, and F. Hélein. Ginzburg-Landau Vortices. Birkhäuser Boston, Boston,
MA, 1994.

[3] J. Colliander and R. Jerrard. Vortex dynamics for the Ginzburg-Landau-Schrodinger equation.
International Mathematics Research Notices, 1998(7):333, 1998.

[4] G. Dujardin, I. Lacroix-Violet, and A. Nahas. A numerical study of vortex nucleation in 2D
rotating Bose-Einstein condensates. 2022.

[5] J. Eichelsdörfer, S. Kaltenbach, and P.-S. Koutsourelakis. Physics-enhanced Neural Networks
in the Small Data Regime, 2021.

[6] R. L. Jerrard and D. Spirn. Refined Jacobian Estimates and Gross–Pitaevsky Vortex Dynam-
ics. Archive for Rational Mechanics and Analysis, 190(3):425–475, 2008.

[7] V. Kalt, G. Sadaka, I. Danaila, and F. Hecht. Identification of vortices in quantum fluids:
Finite element algorithms and programs. 2022.

[8] V. Saz Ulibarrena, P. Horn, S. Portegies Zwart, E. Sellentin, B. Koren, and M. X. Cai.
A Hybrid Approach for Solving the Gravitational N-Body Problem with Artificial Neural
Networks, 2023.

[9] H. Sharma, Z. Wang, and B. Kramer. Hamiltonian Operator Inference: Physics-preserving
Learning of Reduced-order Models for Canonical Hamiltonian Systems, 2021.


