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Introduction

Numerous algorithms exist to solve the Hartree-
Fock / Kohn-Sham / Gross-Pitaevskii equations
of electronic structure. They are either based on
the direct minimization of the energy under con-
straints or based on fixed point iterations to solve
a self-consistent formulation of the problem. It is
not clearly understood which class of algorithms is
more efficient and robust in which situation.

Objectives
• Prove convergence of both approaches;
• compare algorithms in different situations.

Mathematical framework

We consider a system of N electrons. Given a non-linear
discrete energy E (D) := Tr(H0D) + Enl(D) depending on
the model, we have two approaches to the problem:
• using density matrices:

inf
D∈MN

E (D) = Tr(H0D) + Enl(D),

MN :=
{

D ∈ CNb×Nb, D = D∗, Tr(D) = N , D2 = D
}

.

• using molecular orbitals:
(H0 + ∇Enl(D))φi = εiφi , ε1 6 · · · 6 εN

φ∗
i φj = δij,

D =
N∑

i=1
φiφ

∗
i .

Mathematical setting:
• F (D) = H0 + ∇Enl(D) = ∇E (D) is the

Fock matrix;
•ΠD is the orthogonal projection on the

tangent plane TDMN

TDMN :=
{

h =
(

0 hia
hai 0

)}
;

• R is a retraction onto MN s.t.
R(D + δD) = D + ΠDδD + O(δD2) for
D ∈ MN.

Projected gradient descent

Iteration:

∇ME (Dk) := ΠD(∇E (Dk))

Dk+1 := R
(
Dk − βk∇ME (Dk)

)
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Figure 1: Projected gradient.

Convergence of projected gradient

Assume that the problem minD∈MN E (D) has a non-degenerate minimum:
∀ D ∈ MN close to Dmin

E (D) ≥ E (Dmin) + ηD − Dmin
2, η > 0.

Then, if D0 is close enough to Dmin, the iteration
Dk+1 := R

(
Dk − β∇ME (Dk)

)
converges to Dmin for β > 0 small enough.

Sketch of proof: Banach fixed point theorem on
f : D 7→ R (D − βΠD (∇E (D))) and show that Jf (Dmin)|TDminMN

< 1:
1 second order condition on the Lagrangian:

∇2
ME (Dmin) = ∇2E (Dmin) + O ≥ η > 0

where O : TDminMN → TDminMN multiplies both hia and hai by εa − εi and
represents the influence of the curvature on the Hessian;

2 the Jacobian at Dmin on the tangent plane TDminMN is Id − β
(
∇2E + O

)
and is smaller than 1 for β > 0 small enough.

Damped SCF

Iteration:{
F (Dk)φk

i = εk
i φ

k
i , εk

1 6 · · · 6 εk
N < εk

N+1
(φk

i )∗φk
j = δij,

A(Dk) :=
N∑

i=1
φk

i
(
φk

i
)∗

Dk+1 := R
(
Dk + βk

(
A(Dk) − Dk))

MNDk •
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R

Figure 2: Damped SCF.

Convergence of damped SCF

Assume that the problem minD∈MN E (D) has a non-degenerate minimum:
∀ D ∈ MN close to Dmin

E (D) ≥ E (Dmin) + ηD − Dmin
2, η > 0,

and that F (Dmin) has a gap εN < εN+1. Then, if D0 is close enough to
Dmin, the iteration

Dk+1 := R
(
Dk + β

(
A(Dk) − Dk))

is well defined and converges to Dmin for β > 0 small enough.

Sketch of proof: Banach fixed point theorem on
f : D 7→ R (D + β (A(D) − D)) and show that Jf on the tangent plane has
a spectral radius r

(
Jf (Dmin)|TDminM

)
< 1:

1 compute the Jacobian of A on TDminMN with a perturbation method:
JA(Dmin) = −O−1∇2E (Dmin)

where O is the same as before ⇒ JA has eigenvalues < 1;
2 the Jacobian at Dmin on the tangent plane TDminMN is
Id − β(Id + O−1∇2E ) which has spectral radius smaller than 1 for β > 0
small enough.

Comparison of both approaches
Both algorithms have Jacobian of the form Id − βJ → we want the eigenvalues of J to be as close
to 1 as possible. In both cases:

• Gradient descent: J = ∇2E + O • SCF: J = Id + O−1∇2E
→ Small gap will make SCF difficult to converge, but it doesn’t mean that the gradient is bad in this
situation!
→ The SCF can be seen as a matrix splitting method for the first algorithm.
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