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Introduction Mathematical framework

Numerous algorithms exist to solve the Hartree-  We consider a system of N electrons. Given a non-linear

Fock / Kohn-Sham / Gross-Pitaevskii equations
of electronic structure. They are either based on

discrete energy E(D) = Tr(HyD) + E, (D) depending on

the model, we have two approaches to the problem:

the direct minimization of the energy under con-
straints or based on fixed point iterations to solve
a self-consistent formulation of the problem. It is
not clearly understood which class of algorithms is
more efficient and robust in which situation.

e using density matrices:
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e using molecular orbitals:

Objectives

® Prove convergence of both approaches;
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e compare algorithms in different situations.

Projected gradient descent
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Figure 1: Projected gradient.

Convergence of projected gradient

Assume that the problem minpe g, E(D) has a non-degenerate minimum:
YV D € My close to D,

E(D) 2 E(Dmin) =+ 77D o Dmin21
Then, if D is close enough to D.,i,, the iteration
D! = R (D" — BV ME(D"))

converges to D, for 5 > 0 small enough.

n > 0.

Sketch of proof: Banach fixed point theorem on
f:D— R(D— BMNp(VE(D))) and show that J¢(Dmin)|7, g, < 1:

@second order condition on the Lagrangian:
ViU E(Dpin) = VZE(Dpin) + O > 1 >0
where O : Tp My — Tp_. My multiplies both h;, and h,; by €, — ¢; and

represents the influence of the curvature on the Hessian;

@the Jacobian at D, on the tangent plane 7Tp My is |d — [ (VQE + (9)
and is smaller than 1 for 5 > 0 small enough.

Comparison of both approaches

Both algorithms have Jacobian of the form |d — 3J — we want the eigenvalues of J to be as close

to 1 as possible. In both cases:

ient descent: J = V2E + O

e Graag

| make SCF difficult to converge, but it doesn't mean that the

— Small gap wi
situation!
— The SCF can be seen as a matrix splitting method for the first algorithm.

inf E(D) =

My ={D e C"™ D=D* T(D)=N, D*=D}.

(Ho+ VEw(D))oi = €igi, €1 < -+

oSCF: J=Id + O V?E

Mathematical setting:
O F(D) — Hp + VEn|(D) = VE(D) s the

TI’(H()D) + Em(D), Fock matrix;

o [1p is the orthogonal projection on the
tangent plane Tp My

AN
ostoi= 1= ()

e R is a retraction onto My s.t.
R(D +6D) = D + MpdD + O(6D?) for
D e My.
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Damped SCF
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Figure 2: Damped SCF.
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Iteration:
F(Dk)gbf-‘ = ef-‘qbf-‘, 5’1‘ <o K 67\, < 5ﬁ,+1

{(¢f‘)*¢f = 0j;,
A(DR) =D ot (6f)°

D**' = R (D* + B« (A(D*) — D¥))

Convergence of damped SCF

Assume that the problem minpeaq, E(D) has a non-degenerate minimum:
YV D € My close to D,

E(D) > E(Dpin) + 171D — Diyin?,

n > 0,

and that F(Dpin) has a gap =y < =y.1. Then, if D° is close enough to
D,..., the iteration

D"t := R (D" + 3 (A(D*) — D))

is well defined and converges to D,,;, for 3 > 0 small enough.

Sketch of proof: Banach fixed point theorem on
f:Dw— R(D+ 5(A(D)— D)) and show that J; on the tangent plane has

a spectral radius r (Jf(Dmin)\TD | /\/l) < 1:

@compute the Jacobian of A on Tp . My with a perturbation method:
J4(Dmin) = —O V2E(Dyyin)

where O is the same as before = J4 has eigenvalues < 1;

@the Jacobian at D, on the tangent plane Tp_ My is

ld — 3(ld + O 'W?E) which has spectral radius smaller than 1 for 3 > 0
small enough.
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