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General framework
We seek the ground-state energy and density by solving a constrained minimization problem:

E(P) := Tr (H0P) + Enl(P)

linear term nonlinear term

▶ P ∈ CN×N
herm is a trial density matrix;

▶ N is the dimension of the approximation space
(linked to the cut-off energy Ecut in DFTK.jl);

▶ H0 = − 1
2 ∆ + V is the core Hamiltonian;

▶ Enl models the electron-electron interaction,
depending on the chosen DFT model.

Kohn–Sham equations with LDA
Obtained as the Euler–Lagrange equations of (1):


(− 1

2 ∆ + Vnuc) φn + VHxc(ρ) φn = εnφn,

⟨φn, φm⟩ = δnm,

ρ =
Nel∑
n=1

|φn|2 .

linear term

nonlinear term

(1)

min
P∈MNel

E(P) = Tr (H0P) + Enl(P),

MNel :=
{

P ∈ CN×N
∣∣ P = P∗, Tr(P) = Nel, P2 = P

}
.
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Geometrical aspects – First-order condition

min
P∈MNel

E(P) = Tr (H0P) + Enl(P)

The first-order optimality condition is R(P⋆) := ∇MNel
E(P⋆) = ΠP⋆ (H⋆) = 0, which gives, with H⋆ = H(P⋆),

P⋆H⋆(1− P⋆) = (1− P⋆)H⋆P⋆ = 0.

MNel

TP⋆MNel

−∇E(P⋆)

−∇E(P⋆)

E ↘
P∗
•
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E(P⋆) = ΠP⋆ (H⋆) = 0, which gives, with H⋆ = H(P⋆),

P⋆H⋆(1− P⋆) = (1− P⋆)H⋆P⋆ = 0.

▶ [H⋆, P⋆] = 0 ⇒ H⋆ and P⋆ can be codiagonalized;
▶ if (φi )1≤i≤Nel is an o.n.b. of eigenvectors of H⋆

ordered by nondecreasing eigenvalues, then
P⋆ =

∑
i∈I φi φ∗

i , with I the set of occupied
orbitals;

▶ I ⊂ {1, . . . , Nel} and |I| = Nel:
▶ I = {1, . . . , Nel}: Aufbau principle;
▶ I = {1, . . . , Nel} and εNel < εNel+1: strong Aufbau

principle.

In the decomposition H = Ran(P⋆) ⊕ Ran(1 − P⋆),
assuming the Aufbau principle

H⋆ =


← I → I
ε1

. . . 0
εNel

0
. . .

, P⋆ =
[ I I

1Nel 0
0 0

]
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Geometrical aspects – Second-order condition

min
P∈MNel

E(P) = Tr (hP) + Enl(P)

The second-order optimality condition reads (under reasonable assumptions)

∀ X ∈ TP⋆MNel ,

〈
X , [D2

MNel
E(P⋆)]X

〉
F
≥ η ∥X∥2

F , with D2
MNel

E(P⋆) = (Ω⋆ + K⋆)

▶ K⋆ = ΠP⋆∇2E(P⋆)ΠP⋆ is the classical Hessian;
▶ the operator Ω⋆ : TP⋆MNel → TP⋆MNel is defined by,

∀ X ∈ TP⋆MNel , Ω⋆(X) := −[P⋆, [∇E(P⋆), X ]].

▶ D2
MNel

E(P⋆) = Ω⋆ + K⋆ can be interpreted as the Hessian of the energy on the manifold, Ω⋆ represents
the influence of the curvature. Can also be seen as the Hessian of the Lagrangian.
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Structure of Ω⋆

Let (φi , εi )1≤i≤Nel be an eigendecomposition of H⋆. Recall, if H = Ran(P⋆)⊕ Ran(1− P⋆),

P⋆ =
[

1Nel 0
0 0

]
and TPMNel :=

{
X =

[
0 ×∗

× 0

]}
.

Then
▶ for i ∈ I and a /∈ I

(Ω⋆X)ia = (εa − εi )Xia and (Ω⋆X)ai = (εa − εi )Xai ;

▶ the gap mina /∈I εa −maxi∈I εi is the smallest eigenvalue of Ω⋆.

Remark 1: if the Aufbau principle is satisfied, then the gap is εNel+1 − εNel .

Remark 2: Ω⋆ = −χ−1
0 , the 4pt-independent particle susceptibility operator1.

1used in response calculations in DFTK.jl, cf. E. Cancès, Eric, M.F. Herbst, G. Kemlin, A. Levitt, and B. Stamm. Numerical Stability and
Efficiency of Response Property Calculations in Density Functional Theory. Letters in Mathematical Physics 113(1):21 (2023).
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Computational framework
We consider a hierarchy of two discretization spaces with N ≪ Nref :

VN ⊂ VNref

variational approximation space reference space

The problem becomes:

min
P∈MNel,N

Tr(hP) + Enl(P), MNel,N :=
{

P ∈ CN×N
∣∣ P = P∗, Tr(P) = Nel, P2 = P

}
.

▶ For convergence analysis and standard computations (ground-state energy and density, response
calculations, . . . ), we work in VN .

▶ For error estimation :
1. we find a solution P ∈ MNel,N ⊂ CN×N ⊂ CNref×Nref in the approximation space VN (for instance with a SCF

algorithm);

2. we try to estimate the error w.r.t. P⋆ ∈ MNel,Nref ⊂ CNref×Nref , the solution in the reference space VNref , for a
computational cost at most equivalent as for obtaining P.
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Linearization
Recall that Ω⋆ + K⋆ ∈ L(TP⋆MNel,Nref ) is the Jacobian of P 7→ R(P) = ΠP∇E(P) at P⋆:

ΠP∇E(P) ≈ ΠP⋆∇E(P⋆) + (Ω⋆ + K⋆)(P − P⋆) + o(∥P − P⋆∥F).

As ΠP⋆∇E(P⋆) = 0, with R(P) the residual, in the linear regime,

ΠP(P − P⋆) ≈ (Ω⋆ + K⋆)−1R(P)

Numerical check: the linear regime is established if P − (Ω⋆ + K⋆)−1R(P) is much closer to P⋆.

0 20 40 60 80
10−16

10−12

10−8

10−4

100

Ecut

|ESCF − E∗|
|ENewton − E∗|

0 20 40 60 80
10−11

10−8

10−5

10−2

101

Ecut

∥ρSCF − ρ∗∥L2

∥ρNewton − ρ∗∥L2

0 20 40 60 80

10−13

10−10

10−7

10−4

Ecut

|FSCF − F∗|
|FNewton − F∗|

6 / 14



Linearization
Recall that Ω⋆ + K⋆ ∈ L(TP⋆MNel,Nref ) is the Jacobian of P 7→ R(P) = ΠP∇E(P) at P⋆:

ΠP∇E(P) ≈ ΠP⋆∇E(P⋆) + (Ω⋆ + K⋆)(P − P⋆) + o(∥P − P⋆∥F).

As ΠP⋆∇E(P⋆) = 0, with R(P) the residual, in the linear regime,

ΠP(P − P⋆) ≈ (Ω⋆ + K⋆)−1R(P)

Numerical check: the linear regime is established if P − (Ω⋆ + K⋆)−1R(P) is much closer to P⋆.

0 20 40 60 80
10−16

10−12

10−8

10−4

100

Ecut

|ESCF − E∗|
|ENewton − E∗|

0 20 40 60 80
10−11

10−8

10−5

10−2

101

Ecut

∥ρSCF − ρ∗∥L2

∥ρNewton − ρ∗∥L2

0 20 40 60 80

10−13

10−10

10−7

10−4

Ecut

|FSCF − F∗|
|FNewton − F∗|

6 / 14



Interatomic forces (at the discrete level)

Recall E(P) = Tr(hP) + Enl(P) with h = − 1
2 ∆ + V : V = V (X) for X = (Xj ) ∈ ωM positions of atomic nuclei

⇒ E(P) = E(X , P).

Hellmann–Feynman:
P⋆ = argmin

{
E(X0, P̃)

∣∣ P̃ ∈MNel,Nref

}
;

F⋆ = F (P⋆) =
[
−∇Xjα E(X0, P⋆)

]α=1,2,3
j=1,...,M

=
[
−Tr

(
∂Xjα V (X0)P⋆

)]α=1,2,3
j=1,...,M

.

First naive error bound for the interatomic forces F (P):

|F (P)− F⋆| ≤ ∥dF (P⋆)∥op ∥P − P⋆∥F

≤ ∥dF (P⋆)∥op∥(Ω⋆ + K⋆)−1∥op∥R(P)∥F.
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Error on the forces for a silicon crystal.
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In the asymptotic regime:

P − P⋆ ≈ (Ω + K)−1R(P) ≈ M−1R(P) in energy norm.

not computable

generalization of Ω⋆ + K⋆ to P ̸= P⋆ : computable but expensive

computable and cheap

Replace the error F (P)− F⋆ by dF (P) · (ΠP(P − P⋆)).

⇝ Good, but not usable in practice (P⋆ is unknown).

Replace P − P⋆ by M−1R(P), with M ∼ − 1
2 ∆ + 1.

⇝ Better, but still not satisfying.
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Frequency splitting

Let P ∈MNel,Nref , then TPMNel,Nref can be split into low and high frequencies:

TPMNel,Nref = ΠNTPMNel,Nref ⊕ Π⊥
N TPMNel,Nref .

low frequencies high frequencies

If P is a solution of the variational problem in VN , then R(P), M−1R(P) ∈ Π⊥
N TPMNel,Nref .
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Enhanced error bounds

We decompose the error/residual relation onto ΠNTPMNel,Nref ⊕ Π⊥
N TPMNel,Nref to get[

(Ω + K)11 (Ω + K)12
(Ω + K)21 (Ω + K)22

] [
P1 − P∗1
P2 − P∗2

]
=

[
R1
R2

]
.

As the kinetic energy is dominating for high-frequencies, we approximate

(Ω + K)21 ≈ 0 and (Ω + K)22 ≈ M22,

and thus [
(Ω + K)11 (Ω + K)12

0 M22

] [
P1 − P∗1
P2 − P∗2

]
=

[
R1
R2

]
.

This yields a new residual, which requires only an inversion on the coarse grid (M22 being easy to invert):

RSchur(P) =
[

(Ω + K)−1
11 (R1 − (Ω + K)12 M−1

22 R2)
M−1

22 R2

]
.
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Conclusion and take-home messages
▶ With planewaves, the asymptotic regime is quickly established ⇒ linearization of KS equations is useful.
▶ Linearization can be used in a post-processing step:

1. to estimate the error on QoI: Q(P) − Q(P⋆) ≈ dQ(P) · RSchur(P) up to higher order terms;
2. to refine the obtained solution: Q(P) − dQ(P) · RSchur(P) is a better approximation of Q(P⋆).

▶ Implemented by default in DFTK.jl in a simplified framework (PR by Bruno Ploumhans). To be released in
the next version.

Perspectives and ideas:
▶ Metallic systems (positive gap assumption does not hold anymore).
▶ Other quantities of interest than interatomic forces.
▶ Fully guaranteed bounds (on the energy, taking into account both SCF and

discretization errors, cf. poster by Rafael Lainez and me).

Pluto notebook
Some references on post-processing techniques:

▶ E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralik. Post-Processing of the Planewave Approximation of Schrödinger Equations.
Part I: Linear Operators. IMA Journal of Numerical Analysis 41(4):2423-55 (2021).

▶ G. Dusson. Post-Processing of the Plane-Wave Approximation of Schrödinger Equations. Part II: Kohn–Sham Models. IMA Journal of
Numerical Analysis 41(4):2456-87 (2021).

▶ E. Cancès, G. Dusson, G Kemlin, and A. Levitt. Practical Error Bounds for Properties in Plane-Wave Electronic Structure Calculations. SIAM
Journal on Scientific Computing 44(5):B1312-40 (2022).
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