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Vortices in the Gross—Pitaevskii equation

Model for rotating Bose—Einstein condensates?

.1 2
Zfl% = *ZHfmA’IZJ + Vb + glo[P + 1hQA'VY  where A" = (y, —x,0).

~~ vortices are isolated zero of the wave function with nonzero winding number (degree): typical form
for ¢ around a vortex is f(r)e'’ with f(0) = 0 and f(r) = 1.

V. Kalt, G. Sadaka, |. Danaila, and F. Hecht. Identification of vortices in quantum fluids: Finite element algorithm and
programs. Computer Physics Communications, 284:108606, 2023.
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The Ginzburg—Landau functional

A toy model is given by the Ginzburg—Landau energy

functional:
/\w b Py,

where Q C R? is smooth, bounded and simply con-
nected. ¢ > 0 is a small parameter, linked to the
size of vortices.

Given g : 000 — S ¢ € ~ R?, we consider the minimization problem

“Au = = (1— | inQ,
€ argmin {Eg(u), ue H(Q,C), u=gon OQ} = { “ 2( [uEus in Q.
u=g on 0.

We study the minimizers when & — 0 and deg(g, 9Q) # 0 (the winding number of g : 9Q — S' & the
number of times it goes around zero).

Morally: when € — 0, |u:| — 1 but then / |Vu.|* — 400 (otherwise, we can find a limit 7 s.t.

Ue — U a.e., with 7 € H(Q,S") and deg(u, 0Q) = deg(g, 9Q) # 0 = topologically impossible).

Gaspard Kemlin  LAMFA, UPJV GPE simulation via vortex-tracking Séminaire au LMB - 02/04/2024



Ginzburg—Landau vortices

Theorem (The canonical harmonic map?)

There exists u*(-; a) and d = deg(g, dQ) # 0 points a = (ax, ..., aq) in Q such that u. — u*(-; a) (up
to extraction).

m The map v*(-,a): Q — St is called the canonical harmonic map associated to the points
a=(a1,...,aq) and there exists a harmonic function H : R? ~ C — R such that

u”(x;a) = Hx_aj
Ix —aj|”

= H is defined such that u™ satisfies the boundary conditions.

2F. Bethuel, H. Brezis, and F. Hélein. Ginzburg-Landau Vortices. Birkhiuser Boston, 1994.
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Localizing the vortices using the renormalized energy

Theorem (The renormalized energy®)

The vortices coordinates a = (aj)1<j<d is a minimizer of the renormalized energy W on Q.

m The renormalized energy W is defined, for b = (by,. .., bq), by

Interaction term
W(b)= —x> Inlbi—b| + We(b) ~ IimOEE(uE)—d<7r In(1/¢) + ~ )
e—

i# .
Boundary term Universal constant

= W — 400 as two points coalesce (interaction term) or when one point gets close to 90
(boundary term).

3F. Bethuel, H. Brezis, and F. Hélein. Ginzburg-Landau Vortices. Birkhiuser Boston, 1994.
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Time-dependent case

We now consider the following time-dependent Gross—Pitaevskii equation, obtained from the

Schrédinger flow 10:1). = —V E.(1.) of the Ginzburg-Landau energy functional, with Neumann
boundary conditions:

.

Ve o l - 2\ -
(GPE) o = A + = (1 = |9e|")tbe in Q,

Outhe(-,t) =00n 9Q and .(-,0) = 2.

m We are not interested in minimizers anymore: we rather study the evolution of an initial wave
function ¢? which is made of “almost vortices”.

m Vorticity not restricted anymore to dj = +1: d; = —1 is now allowed too.
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Vortex dynamics*®

Assuming that

m the vorticity of 40 converges, when € — 0, to a sum of Dirac masses with given locations a° € Q"
and degrees d € {£1}":
N
0 . 1 . . 1 — —
J, > E dido, with Jy = EV x j(¢) and j(v) = Z(wV@[) — V1) = super-current;
J

=t

m the initial energies E. (/%) are bounded by: E.(¢.) < 7NIn(1/e) + C.

N
‘ . 0 1
Then, for t > 0, Ji.(t) — = E d;da(r), where a(t) solves, with J = [_1 0},
j=1
3(t) = —Ld IV, W(a(t), d),
Dy 40 = GIVs (@(®):9): here W(a, d) = —r N~ didjina; — 3| + Wc(a, d).
aj(o) = aj7

1<iA<N

*#J. Colliander and R. Jerrard. Vortex dynamics for the Ginzburg-Landau-Schrodinger equation. International Mathematics
Research Notices, 1998(7):333, 1998.

SF.-H. Lin and J. X. Xin. On the Incompressible Fluid Limit and the Vortex Motion Law of the Nonlinear Schrédinger
Equation. Communications in Mathematical Physics, 200(2):249-274, 1999.
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Convergence results

degree 1: ¥ degree —1: e~

Results also characterize
m Y (t) = u*(+ a(t),d) in WHP(Q), p < 2,
m j(e(t)) — j(u™(5 a(t), d)) in LP(Q), p <2,

Here, u*(-; a, d) with values in S' is the uniquely determined harmonic map with singularities at
locations a with local degrees d, and with boundary conditions:

Ix — aj

N o
u*(x;a,d)_eZH(X)H(X_aj> , x€QCR ~C,

Jj=1

for a harmonic phase function H € C°°(Q) such that the boundary conditions are satisfied.

Time interval

While GP is globally (in time) well-posed, the vortex dynamics is valid only up to the first vortex
collision.
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Objectives

Numerical simulation of (GPE) in the regime of small &'s.

= With standard methods (FEM, FD, FV...), e < 1 typically requires very fine space/time
discretization to avoid stability issues.

m Here, the well-known theory of vortex dynamics in the singular limit € — 0 can be used to
circumvent these difficulties.

= Main idea: simulate the (finite dimensional) Hamiltonian dynamics (HD) instead of the (infinite
dimensional) equation (GPE).

Gaspard Kemlin  LAMFA, UPJV
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Refined Jacobian estimates and well-preparedness
m Refined Jacobian estimates

m Well-prepared initial conditions
m Approximation of the solution to GPE via vortex-tracking
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Jacobian estimates to localize the vortices

m Most of the convergence results are based on compactness arguments: no rate of convergence. ..

= Significant improvement in 2008, with estimate on Ji. and (1<) for small, but finite, e:

Theorem (Jerrard, Spirn, 2008°)

Let 1. solve (GPE) with well-prepared initial conditions, for some initial vortices with positions
a® = (a))j-1,....n and degrees (d;)j-1,...n. Then, there exists o, 0 < B3, £ <1 and C > 0, depending
only on Q and the initial conditions, such that, for any € < eo, well-preparedness is preserved along

time. In particular,

(Js) Jpe(t) =7 didy o S and |j(e(t)) —j(u"(a(t), d))] 5 S <°

W—1,1

for any 0 < t < 7, 0, where a(t) = (aj(t))j=1

n solves the Hamiltonian ODE (HD) and 7, 5
depends on € and a

gooog

SR. L. Jerrard and D. Spirn. Refined Jacobian Estimates and Gross—Pitaevsky Vortex Dynamics. Archive for Rational
Mechanics and Analysis, 190(3):425-475, 2008.
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Some comments on these results

m The W51 is the good norm to use because

1 . .
|ai—bi] <  min {laj—aul, dist(a,09)} = pa = |7 (00 —0s,) =) wldil|ai — bi.
i Ww—1,1 i
~~ not tractable numerically, better use the L3 norm on the super-current.

m 7 . defined such that the result remains valid for times up to O(In(1/¢)) or the first vortex
collision.

m Difficult and lengthy proof, the powers of € appearing there are a bit arbitrary.

Gaspard Kemlin  LAMFA, UPJV GPE simulation via vortex-tracking Séminaire au LMB — 02/04/2024 14 / 39



Well-prepared initial conditions

Well-prepared initial conditions

A family of initial conditions (12)c>0 is said to be well-prepared if it satisfies the following
assumptions, for some constant C > 0, 0 < a < 1 and ¢ small enough:

there exists N vortices with positions a® = (af)j-1,...n € QY and degrees
d = (dj)j=1,...n € {+1}" such that

N
Jwgiﬂ— E dj‘é‘ag SEQ7
J
Jj=1 Ww—1,1
and the vortices are distant enough;

the energy of 12 is close to be optimal: W.(a’ d)

Iy

E-(v2) < W(a’ d)+ N(rIn(1/e) +7) + Ce?.

~~ the refined Jacobian estimates from JS'08 can be interpreted as the conservation of
well-preparedness along time.
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Numerical construction of well-prepared initial conditions

Well-prepared initial conditions can be obtained by smoothing out the harmonic canonical map u* for a
single vortex of degree +1:

Make the ansatz f(r)e*’ and insert it in the station-

ary equation = f. ,, has to solve, for a given ro > 0,
Y €q "0 € ry=0.25

1 rod? o
Z (M (r) = Zfn(r)
1
+? (1_|f€7fo(r)|2) ﬁf;’o(r):Ov ~
205
with £z, (0) = 0 and £ () = 1. Then, define h
—e=0.04
H(x) . 0 x—3a ? -y
YI(x) =" fero(|x — a; _ , oot ‘ ‘ i
( ) E 'D(| J)(Xaj”) 0.0 0.2 0.4

where H is harmonic and such that 9,4} = 0.

“R. L. Jerrard and D. Spirn. Refined Jacobian Estimates and Gross—Pittaevsky Vortex Dynamics. Archive for Rational
Mechanics and Analysis, 190(3):425-475, 2008.
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= Such a family (¥})c>0 is well-prepared, for r; small enough.

= We also have the following results in terms of wave function and super-currents:

Lemma

Let (1Z)->0 be constructed as before. Then, for ro small enough, there exists some constant C > 0,
independent of ¢, such that

|z (a,d) — u*(a,d)|| < Ce.

li(v(a, d)) —j(u*(a, )|, < C(p)er " forl<p<2.

~ this typically implies that, for p = 3, the power £ of & appearing in JS'08 is bounded by 1.
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Approximation of the solution to GPE via vortex-tracking

Define initial vortex positions a® € Q" and degrees d ¢ {:tl}N: define 42 by smoothing out the
canonical harmonic map.

Evolve a(t) according to (HD) up to some maximum time T.

At time t > 0, build back an approximation of the solution 1. from the vortex positions a(t) as

N
wI(t) = ¢i(a(t), d) = u"(sa(t), d) [[£(-—a(0)]) xeQ,
j=1
where u*(x; a(t), d) is the canonical harmonic map defined by

N d;
u*(x;a(t), d) = exp (tH(x) [ | (ﬁ) :
j=1
with H the unique zero-mean harmonic function such that u* satisfies the Neumann boundary

conditions.

The harmonic function H is defined only up to a constant: this implies that the reconstructed wave
function 17 is an approximation of . only up to a constant phase.
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initial conditions evolve N N
— QF +1

(@ d) e QN x {1}V (HD) (a(t),d) € < {#1}

J smoothing smoothing |

well-prepared wave function  evolve
0 * (0
e =2 (a 7d) (GPE)

Figure: Diagram summarizing the numerical simulation of the GP equation via vortex tracking.

Ye(t) = ¥Z(a(t),d) (up to a constant phase)
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Mathematical justification

Let a° € Q*V and d € {£1}" be given as initial data. Let a(t) evolves according to (HD). Let 1. be
the solution to (GPE) with initial conditions 2 = )(a°) for ¢ and ry small enough. Then, for all
0<t< T 0,

Both 1< (t) and ¢Z(t) are close to be energetically optimal:

E-(vo(t)), E- (2 (t)) < We(a(t), d) + Ce?.
Up to a constant phase, the error |[¢c(t) — 12 (t)]|,2 goes to 0 as € — 0.

The Jacobians and super-currents of 1. and ¢ are close, in the sense

1= (£) = JPZ ()l -1 S and  [j(e(2)) = j(WE (D)

4 S 65.
L3

Proof: triangular inequalities together with the results from JS'08 and properties of the smoothing
procedure.

O

Gaspard Kemlin  LAMFA, UPJV

GPE simulation via vortex-tracking

Séminaire au LMB — 02/04/2024 20 /39



Numerical simulation via vortex-tracking
m Numerical simulation of the vortex dynamics
m Numerical simulation of the GPE via vortex-tracking

m Error control on the super-current

ia vortex-tracki
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More details on the Hamiltonian dynamics

Recall the Hamiltonian ODE (HD)

3(t) = —1dJv, W(a(t),d), _ o 1
{aj(O) ) it J{—l 0]’

R

for given initial positions a® € Q" and degrees d € {:I:l}N. Here,

{

N
V(ad)e Q" x {(+1}", W(a,d)=—7 Y  ddinla—al- 7> dR(z;ad),
1<i#<N Jj=1

with R the solution to
AR=0 in €,

N
R:—Zdjln|x—aj\ on 0L2.
j=1
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Numerical simulation of the vortex dynamics

a(t) = —+diIV, W(a(t), d),
aj(0) = af,

W(a,d)=-r »_ ddln|a,—a,|—7erRa,,ad

1<i# <N

= Simulating the Hamiltonian system (HD) requires the evaluation of V, W(a,d). From BBH'94 ®
[Theorem VIIL.3], it holds

N
VoyW(a, d) = —2rdVs [ R(x;a,d) + » _ diIn|x - aj

i x=2;

m We are left with the resolution of a PDE at each time step to evaluate Vi R(x; a, d)|x=a;

8F. Bethuel, H. Brezis, and F. Hélein. Ginzburg-Landau Vortices. Birkhiuser Boston, 1994.
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Using harmonic polynomials to evaluate the renormalized energy

AR=0 inQ,

N
(R) R:dejln|xfaj| on 0L2.
j=1

m R is harmonic and the boundary condition is smooth as long as the vortices stay away from the
boundary : we suggest to use harmonic polynomials.

m In the case where Q C R? is the unit disk, the restriction of the harmonic polynomials to the
boundary 0% is nothing else than the basis of the Fourier modes for 27-periodic functions.
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Choose a maximum degree n and let P, the L?(9S)-orthogonal projection operator from L*(0Q)
to Fourier modes up to n: for any g € L?(9Q),

n 21
(Png)(e?) = Z 2(k)e™®,  where Z(k) L / e " g(e')do.
0

2
k=—n

Compute the Fourier coefficients (g.(k))—n<k<n of the Dirichlet boundary condition in (R)

N
[0,27) 5 0 — ga(e'?) == — Z d;In|(cos@,sin6) — aj
j=1
up to order n, for instance using a Fast Fourier Transform (FFT).
Compute the (approximate) solution R, to (R) as the harmonic expansion of P,g.:

Vre [07 1)7 Voe [0,271')7 Rn(re“g) — Z r‘k Ea(k)ey,ké).

k=—n

which is still harmonic by linear combination of harmonic functions.

Gaspard Kemlin  LAMFA, UPJV GPE simulation via vortex-tracking Séminaire au LMB — 02/04/2024
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Numerical simulation of the GPE via vortex-tracking

initial conditions evolve N N
QF 1

(a%d) € QN x {£1}" ooy (A d) € AT {EL)

J smoothing smoothing |

well-prepared wave function  evolve
0 * (0
Y =9i(a’, d) (GPE)

Figure: Diagram summarizing the numerical simulation of the GP equation via vortex tracking.

Ye(t) = ¥Z(a(t),d) (up to a constant phase)
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Videos

GPE simulation via vort



Error control on the super-current

Error estimate on super-current

Let Q C R? be the unit disk, and {t:(t)}c<<, be the solution of (GPE) with well-prepared initial
conditions for some initial vortices with positions @ = (a?);_1,...,v and degrees (d;);—1,....n. Let b(t) be
the approximated ODE trajectory with the same degrees and |n|t|aI position b® = (b )J 1,...n, With
harmonic polynomials of degree up to n and time step dt with numerical integrator RK4. Let ¥ (t) be
the reconstructed wave function described above. Suppose that, for some T > 0,

pT = g? min{|b;(t) — bk(t)|, dist(bk(t), 0Q), |a;j(t) — ax(t)|, dist(a;(t),0RQ) : j # k}

is such that 0 < p7 < 1. Then there exists a constant C > 0 such that

@ L

i ®) - (o), szew”ff*%(mb°|+”"’1?5”“7)e“/”57/2+6t4,
: ozl

for any t € [0, T] and £ € N.
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Proof: at any time, split the error into

i(9=()) = j (%= (1))

wis
INA
-
—~
™
—
~
~
~
|
—
—~
<

“(a(t), ) 4
+ [l (" (a(e), d)) = (" (b(t), d)| &
—J(@x(1)]]

with a(t) the exact vortex trajectories and b(t) the approximated ones. Deal with each term
separately:

treated by JS'08,

needs more work: approximated resolution of (HD) (approximation of R and time integration)

m RK4 numerical integrator yields §t*,
m harmonic polynomials yields spectral accuracy,

treated by the smoothing procedure, with additional error coming for the computation of the
harmonic phase H, still with harmonic polynomials.

4,
L3’

NB: the /- comes from the § norm on the super-currents.
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Numerical convergence of the vortex trajectories

m Initial conditions given by d = (+1,+1) and a° = (+m,0), (—m,0).

m Error on a reference, converged, trajectory vs an approximated one: |a(t) — b(t)|.

error at t=T=1.0,

St=1.0e—5

Gaspard Kemlin

GPE simulation via vortex-tracki

error at t= T=1.0, n=256
+ & -
00 &--m . S m=01, 7.66-10°" x 61
e, Sy . e 40 m=0.3, 7.50-10%% x 5" o
S Tteel. Toeem : Sm=06, 132107 x 5% o
- TUtveeel m=0.9, 1.32-107%x '
T 50 % 3 60 e
£ 2 -
¥ . H I
- = 80 * .-
S10.0F - p=0.1, 3.0 x exp(—0.18n) -
m=0.3, 1.19 x exp( —0.42n) X x
-m=0.6, 0.61 x exp( —0.53n) -10.0 -e
m=0.9, 1.04 x exp( —0.07n) . w -
-15.0 ) s - o . ‘
20 40 60 3.0 25 2.0
n log(dt)




Numerical convergence of the vortex-tracking method

m Initial vortex location given by d = (+1,+1) and a° = (+0.5,0),(—0.5,0).

= Run a reference, expensive, calculation to compute the solution to (GPE) with 2 as initial data
for several ¢'s (we used Gridap.jl, a Julia FE solver).

m Compare different quantities: vortex trajectories’, solutions in L? and H' norms, super-currents.

T=10, £=0.1

1.0 1.0 =1
05F 05F \
= 00l 1 = 00 @1
05} 05} /
R Ty 0'0 05 1.0 % o o;_o 05 10

9W. Bao and Q. Tang. Numerical Study of Quantized Vortex Interactions in the Non-linear Schrédinger Equation on
Bounded Domains. Multiscale Modeling & Simulation, 12(2):411-439, 2014.
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Numerical study of €'s powers

1—¢
n 0 (1—pr)™n ct/p%/?
+4/(1a° = b% + o T e/ 45t
Pr

T=1.0 T=1.0
— £=0.0025, 3.60-10°% x ' A 100025, 106100 x 0 e
S- =025, 8281070 x PR em OBF - 1=025, 127-10%0 x % T m
1=0.5, 1.14-107% x 10 - aee o . 14210401 206 e .
--0=0.75, 1.24-10*% x £ - o -at=0.75, 1.63-10+% x g% - L T

£=10, 1.73-10%0 x 0% 051 . 1=1.0, 2.04.10%0 x5 o - .-
-- ; )

0.3F

log([l5(v.(t)) — 3(u" (a(t),d))|| )

-1.4 -1.2 -1.0
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Take-home message and perspectives

Take-home message:

= The well-known analytical framework of the singular limit € = 0 permits a numerical method
which is more accurate as € — 0, in contrast to standard methods.
m Well-preparedness being preserved over time, we can recover an approximation in H' (while
u* ¢ HY.
4
= Error control on the super-current in L3 is possible, the smoothed out approximation 1)} seems to
give an exponent of order 1 to € while, as expected, the canonical harmonic map is limited to %

m Limits: nonlinear phenomena such as radiation waves emitted by vortex collision cannot be
reproduced. .. (BT'14).

Perspectives:
m Easy extension to unknown vortex locations in the initial wave function.
m Sharpness of the error bound 7

m Learning vortex trajectories with machine learning (recent works on Hamiltonian neural networks):

m Knowing the real Hamiltonian makes validation easier.
m Extension to models of vortices where the Hamiltonian is unknown (with magnetic fields ?).
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