Fully guaranteed and computable error bounds for the energy of Kohn–Sham equations with convex density functionals

Gaspard Kemlin

https://gkemlin.pages.math.cnrs.fr/

Joint work with Andrea Bordignon, Eric Cancès, Geneviève Dusson, Rafael Lainez and Benjamin Stamm.

LAMFA, Université de Picardie Jules Verne - CNRS UMR 7352

EMC2@Roscoff'24 - 04/07/2024

Introduction

A posteriori analysis of the abstract problem

Guaranteed and computable bounds for the energy

Numerical results

Conclusion

Introduction

A posteriori analysis of the abstract problem

Guaranteed and computable bounds for the energy

Numerical results

Conclusion

Functional setting

- ▶ Periodic lattice $\mathcal{R} = \mathbb{Z}a_1 + \mathbb{Z}a_2 + \mathbb{Z}a_3$ for (a_1, a_2, a_3) a basis of \mathbb{R}^3 .
- Unit cell $\Omega = [0, 1)a_1 + [0, 1)a_2 + [0, 1)a_3$.
- Reciprocal lattice $\mathcal{R}^* = \mathbb{Z}\boldsymbol{b}_1 + \mathbb{Z}\boldsymbol{b}_2 + \mathbb{Z}\boldsymbol{b}_3$ where $\boldsymbol{a}_i \cdot \boldsymbol{b}_j = 2\pi\delta_{ij}$.
- Hilbert space $\mathcal{H} = L^2_{\#}(\Omega)$, with scalar product $\langle \cdot, \cdot \rangle$.
- Orthonormal basis of H given by Fourier modes:

$$\mathcal{H} := \left\{ u \in \mathsf{L}^2_{\mathsf{loc}}(\mathbb{R}^3), \ u \text{ is } \mathcal{R}\text{-}\mathsf{periodic} \right\} = \mathsf{Span} \left\{ r \mapsto e_{\boldsymbol{G}}(\boldsymbol{r}) \coloneqq \frac{1}{\sqrt{|\Omega|}} \mathsf{e}^{\imath \boldsymbol{G} \cdot \boldsymbol{r}}, \ \boldsymbol{G} \in \mathcal{R}^* \right\}$$

Sobolev spaces:

$$\forall s \in \mathbb{R}, \quad \mathsf{H}^{s}_{\#}(\Omega) \coloneqq \left\{ u(x) = \sum_{\mathbf{G} \in \mathcal{R}^{*}} \hat{u}_{\mathbf{G}} e_{\mathbf{G}}(x), \sum_{\mathbf{G} \in \mathcal{R}^{*}} \left(1 + \frac{|\mathbf{G}|^{2}}{2} \right)^{s} |\hat{u}_{\mathbf{G}}|^{2} < +\infty, \ \hat{u}_{-\mathbf{G}} = \hat{u}^{*}_{\mathbf{G}} \right\}$$

Quantum mechanics of a single electron

In atomic units, with no spin, we look at the PDE in $\psi(\cdot, t) \in \mathcal{H}$

$$i\partial_t \psi(x,t) = -\frac{1}{2}\Delta \psi(x,t) + \frac{V(x)}{V(x)}\psi(x,t) =: (h \psi)(x,t)$$
kinetic operator
Hamiltonian

- $\blacktriangleright \|\psi(\cdot,t)\| = 1.$
- Stationary states $\psi(x, t) = e^{-i\varepsilon t}\varphi(x)$ where

$$egin{cases} harphi = arepsilon arphi, \ \|arphi\| = 1. \end{cases}$$

- Ground-state energy: $E_{\star} = \min_{\|\varphi\|=1} \langle \varphi, h\varphi \rangle.$
- Ground-state density: $\rho_{\star}(x) = |\varphi(x)|^2$.

(Wikipedia)

Quantum mechanics of noninteracting electrons

Consider a system of N_{el} noninteracting electrons:

- ▶ Pauli exclusion principle ~→ two electrons cannot be in the same quantum state.
- Ground-state \rightsquigarrow electrons fill the N_{el} lowest energy states (*Aufbau* principle).

$$\begin{cases} h\varphi_i = \varepsilon_i \varphi_i, \quad \varepsilon_1 \leq \cdots \leq \varepsilon_{N_{\rm el}}, \\ \langle \varphi_i, \varphi_j \rangle = \delta_{ij}, \end{cases} \qquad h \coloneqq -\frac{1}{2} \Delta + V.$$

$$- \varepsilon_{N_{el}+2}$$

Density matrices

Orbitals $(\varphi_i)_{1 \leq n \leq N_{el}}$ are not unique (degeneracies) \rightsquigarrow better to work with the *orthogonal projector* onto the space they span :

$$\gamma_{\star} = \sum_{i=1}^{N_{el}} |\varphi_i\rangle\langle\varphi_i|, \quad \operatorname{Ran}(\gamma_{\star}) = \operatorname{Span}(\varphi_i)_{1 \le n \le N_{el}},$$

 $\rho_{\star}(x) = \gamma_{\star}(x, x).$

• γ_{\star} is a rank $N_{\rm el}$ orthogonal projector (*density matrix*):

$$\gamma_{\star} \in \mathcal{M}_{N_{el}} := \Big\{ \gamma \in \mathcal{S}(\mathcal{H}), \ \mathsf{Ran}(\gamma) \subset \mathsf{H}^{1}_{\#}(\Omega), \\ \gamma^{*} = \gamma = \gamma^{2}, \ \mathsf{Tr}(\gamma) = N_{el}$$

The ground-state energy reads

$$E_{\star} = \sum_{i=1}^{N_{
m el}} arepsilon_i = \sum_{i=1}^{N_{
m el}} \langle arphi_i, h arphi_i
angle = \sum_{i=1}^{N_{
m el}} {
m Tr}(h|arphi_i
angle \langle arphi_i|) = {
m Tr}(h \gamma_{\star})$$

and moreover $\operatorname{Tr}(h\gamma_{\star}) = \min_{\gamma \in \mathcal{M}_{N_{el}}} \operatorname{Tr}(h\gamma).$

$$\begin{cases} h\varphi_i = \varepsilon_i \varphi_i, \quad \varepsilon_1 \leq \cdots \leq \varepsilon_{N_{\rm el}}, \\ \langle \varphi_i, \varphi_j \rangle = \delta_{ij}. \end{cases}$$

Notations for $\gamma \in \mathcal{M}_{N_{el}}$ If $\psi \in \mathcal{H} = \operatorname{Ran}(\gamma) \oplus \operatorname{Ran}(1 - \gamma)$, $\gamma \psi = \sum_{i=1}^{N_{el}} \langle \varphi_i, \psi \rangle \varphi_i = \sum_{i=1}^{N_{el}} |\varphi_i \rangle \langle \varphi_i | \psi \rangle$ $\gamma(x, y) = \sum_{i=1}^{N_{el}} \varphi_i(x) \varphi_i^*(y)$.

Interacting electrons and DFT

General form of the energy

- $\gamma \in \mathcal{M}_{N_{el}}$ is a trial density matrix;
- $h = -\frac{1}{2}\Delta + V$ is the core Hamiltonian;
- F models the electron-electron interaction and depends only on the electronic density ρ_γ.

General framework:

 $\min_{\gamma \in \mathcal{M}_{N_{\mathsf{el}}}} \mathsf{Tr}(h\gamma) + \mathcal{F}(\rho_{\gamma})$

Density functional theory (DFT) $F(\rho_{\gamma}) = \frac{1}{2}\mathcal{D}(\rho_{\gamma}, \rho_{\gamma}) + E_{xc}(\rho_{\gamma})$ where $\rho_{\gamma}(x) = \gamma(x, x)$ and $\mathcal{D}(\rho, \rho) = \iint_{\Omega \times \Omega} \frac{\rho(x)\rho(y)}{|x - y|} dxdy.$

Kohn–Sham equations

Linearization

For every $\gamma \in \mathcal{M}_{N_{\mathrm{el}}}$, there exists (under reasonable assumptions) $V_{\rho_{\gamma}} \in L^{\infty}_{\#}(\Omega)$ such that

```
\forall \ \hat{\gamma} \in \mathcal{M}_{N_{\mathsf{el}}}, \quad \langle \mathsf{F}'(\rho_{\gamma}), \rho_{\hat{\gamma}} \rangle_{\mathcal{H}',\mathcal{H}} = \mathsf{Tr}(\mathsf{V}_{\rho_{\gamma}}\hat{\gamma}).
```

Kohn–Sham equations

Linearization

For every $\gamma \in \mathcal{M}_{N_{\mathrm{el}}}$, there exists (under reasonable assumptions) $V_{\rho_{\gamma}} \in L^{\infty}_{\#}(\Omega)$ such that

```
\forall \ \hat{\gamma} \in \mathcal{M}_{N_{\mathsf{el}}}, \quad \langle F'(\rho_{\gamma}), \rho_{\hat{\gamma}} \rangle_{\mathcal{H}', \mathcal{H}} = \mathsf{Tr}(V_{\rho_{\gamma}} \hat{\gamma}).
```


Discretization

► Finite dimensional subspace of $H^1_{\#}(\Omega)$: for $N \in \mathbb{R}$,

 $\mathcal{V}_N = \operatorname{Span} \{ e_{\boldsymbol{G}}, \ |\boldsymbol{G}| \leq N \}.$

Galerkin approximation

$$\min\left\{\textit{\textit{E}}(\gamma), \ \gamma \in \mathcal{M}_{\textit{N}_{\sf{el}}}, \ \textsf{Ran}(\gamma) \subset \mathcal{V}_{\textit{N}}\right\}$$

Discretization

► Finite dimensional subspace of $H^1_{\#}(\Omega)$: for $N \in \mathbb{R}$,

 $\mathcal{V}_N = \text{Span} \{ e_{\boldsymbol{G}}, \ |\boldsymbol{G}| \leq N \}.$

Galerkin approximation

$$\min\left\{ \boldsymbol{\mathit{E}}(\gamma), \ \gamma \in \mathcal{M}_{N_{\mathsf{el}}}, \ \mathsf{Ran}(\gamma) \subset \mathcal{V}_{N} \right\}$$

Discrete Kohn–Sham equations

Find $(\varphi_{i,N}, \varepsilon_{i,N})_{i=1,...,N_{el}} \in (\mathcal{V}_N \times \mathbb{R})^{N_{el}}$ such that

$$\begin{cases} \Pi_{N} H_{\rho \gamma_{N}} \Pi_{N} \varphi_{i,N} = \varepsilon_{i,N} \varphi_{i,N}, \quad \varepsilon_{1,N} \leq \varepsilon_{2,N} \leq \cdots \leq \varepsilon_{N_{\text{el}},N}, \\ \langle \varphi_{i,N}, \varphi_{j,N} \rangle = \delta_{ij}, \\ \gamma_{N} = \sum_{i=1}^{N_{\text{el}}} |\varphi_{i,N}\rangle \langle \varphi_{i,N}|. \end{cases}$$

Self-consistent field (SCF) iterations

SCF iterations

$$\begin{cases} \Pi_{N}H_{\rho_{\gamma_{N,m}}}\Pi_{N}\varphi_{i,N,m+1} = \varepsilon_{i,N,m+1}\varphi_{i,N,m+1}, & \varepsilon_{1,N,m+1} \leqslant \varepsilon_{2,N,m+1} \leqslant \cdots \leqslant \varepsilon_{N_{el},N,m+1}, \\ \langle \varphi_{i,N,m+1}, \varphi_{j,N,m+1} \rangle = \delta_{ij}, \\ \gamma_{N,m} = \sum_{i=1}^{N_{el}} |\varphi_{i,N,m+1}\rangle \langle \varphi_{i,N,m+1}|. \end{cases}$$

Self-consistent field (SCF) iterations

SCF iterations

$$\begin{cases} \Pi_{N}H_{\rho_{\gamma_{N,m}}}\Pi_{N}\varphi_{i,N,m+1} = \varepsilon_{i,N,m+1}\varphi_{i,N,m+1}, & \varepsilon_{1,N,m+1} \leqslant \varepsilon_{2,N,m+1} \leqslant \cdots \leqslant \varepsilon_{N_{el},N,m+1}, \\ \langle \varphi_{i,N,m+1}, \varphi_{j,N,m+1} \rangle = \delta_{ij}, \\ \gamma_{N,m} = \sum_{i=1}^{N_{el}} |\varphi_{i,N,m+1}\rangle \langle \varphi_{i,N,m+1}|. \end{cases}$$

Does not converge most of the time.

- Lost of tricks should be used: mixing, preconditionning, acceleration,
- ► Arise from a minimization problem ~→ more and more applications coming from Riemanian optimization, not considered here.

Problem formulation and existing results

Questions

- Can we upper bound $E(\gamma_{N,m}) E(\gamma)$ by computable quantities ? They should depend on N and m and go to 0 as $N, m \to +\infty$.
- Are these bounds satisfactory ? How to use them in practice ?

Two main difficulties

- Cluster of eigenvalues.
- Nonlinearity of the energy functional.

Problem formulation and existing results

Questions

- Can we upper bound $E(\gamma_{N,m}) E(\gamma)$ by computable quantities ? They should depend on N and m and go to 0 as $N, m \to +\infty$.
- Are these bounds satisfactory ? How to use them in practice ?

Two main difficulties

- Cluster of eigenvalues.
- Nonlinearity of the energy functional.

- Error control for eigenvalues of linear operators is already well established. (Kato-Temple bound, Forsythe (1954), Weinberger (1956), Bazley and Fox (1961), Hu, Huang, Lin and Shen (2014), Larson (2000), Liu (2015))
- Electronic structure. (works by Cancès, Dusson, Maday, Stamm, Vohralik, Levitt, Herbst...)
- Fewer results for nonlinear models. (Gross-Pitaevskii, see Maday and Dusson (2017), see also Chen, He and Zhou (2011))
- Nonguaranteed bounds for nonlinear models and quantities of interest. (Cancès, Dusson, Kemlin, Levitt (2022))
- Dusson and Maday, An overview of a posteriori error estimation and post-processing methods for nonlinear eigenvalue problems, JCP 491 (2023).
- Adaptive methods. (Dai, Pan, Yang and Zhou (2021) for linear eigenvalue problems with plane-wave discretization or Liu, Chen, Dusson, Fang and Gao (2022) for a recent application to Kohn–Sham models, see also Hassan, Maday and Wang (2024))

Introduction

A posteriori analysis of the abstract problem

Guaranteed and computable bounds for the energy

Numerical results

Conclusion

Lemma

For any $\mu \in \mathbb{R}$, any $\gamma_1, \gamma_2 \in \mathcal{M}_{N_{el}}$, it holds

$$E(\gamma_2) - E(\gamma_1) = \operatorname{Tr}\left((h + V_{\rho\gamma_2} - \mu)\gamma_2\right) - \operatorname{Tr}\left((h + V_{\rho\gamma_2} - \mu)\gamma_1\right) \\ - \left(F(\rho\gamma_1) - F(\rho\gamma_2) - \langle F'(\rho\gamma_2), \rho\gamma_1 - \rho\gamma_2 \rangle_{\mathcal{H}',\mathcal{H}}\right)$$

Proof:

For any
$$\mu \in \mathbb{R}$$
, $Tr(\mu\gamma_1) = \mu N_{el} = Tr(\mu\gamma_2)$.

$$\blacktriangleright \langle F'(\rho_{\gamma_2}), \rho_{\gamma_1} - \rho_{\gamma_2} \rangle_{\mathcal{H}', \mathcal{H}} = \mathsf{Tr} \left(V_{\rho_{\gamma_2}}(\gamma_1 - \gamma_2) \right).$$

Assumption

The nonlinearity F is convex: $\forall \gamma_1, \gamma_2 \in \mathcal{M}_{N_{el}}$,

$$\mathcal{F}(\rho_{\gamma_1}) - \mathcal{F}(\rho_{\gamma_2}) - \langle \mathcal{F}'(\rho_{\gamma_2}), \rho_{\gamma_1} - \rho_{\gamma_2} \rangle_{\mathcal{H}',\mathcal{H}} \leq 0.$$

Convex models in KS-DFT

• rHF is convex
$$F(\rho) = \frac{1}{2}\mathcal{D}(\rho, \rho)$$
.

• LDA is not
$$E_{\rm xc}(\rho) = -c \int_{\Omega} \rho^{4/3}$$
.

Assumption

The nonlinearity *F* is convex: $\forall \gamma_1, \gamma_2 \in \mathcal{M}_{N_{el}}$,

$$F(\rho_{\gamma_1}) - F(\rho_{\gamma_2}) - \langle F'(\rho_{\gamma_2}), \rho_{\gamma_1} - \rho_{\gamma_2} \rangle_{\mathcal{H}',\mathcal{H}} \leq 0.$$

Convex models in KS-DFT

• rHF is convex
$$F(\rho) = \frac{1}{2}\mathcal{D}(\rho, \rho)$$

• LDA is not
$$E_{\rm xc}(\rho) = -c \int_{\Omega} \rho^{4/3}$$
.

Corollary

For any $\mu \in \mathbb{R}$, any $\gamma_1, \gamma_2 \in \mathcal{M}_{N_{\mathsf{el}}}$, it holds

$$\mathsf{E}(\gamma_2) - \mathsf{E}(\gamma_1) \leq \mathsf{Tr}\left((h + V_{\rho_{\gamma_2}} - \mu)\gamma_2\right) - \mathsf{Tr}\left((h + V_{\rho_{\gamma_2}} - \mu)\gamma_1\right).$$

Moreover, if we choose $\mu \in \mathbb{R}$ such that $\mathsf{Tr}\left((h + V_{
ho_{\gamma_2}} - \mu)\gamma_1\right) \geq 0$, then

$$E(\gamma_2) - E(\gamma_1) \leq \operatorname{Tr} \left((h + V_{\rho \gamma_2} - \mu) \gamma_2 \right)$$

For any $\gamma_1, \gamma_2 \in \mathcal{M}_{N_{el}}$,

$$E(\gamma_2) - E(\gamma_1) \leq \operatorname{Tr}\left((h + V_{\rho\gamma_2} - \mu)\gamma_2\right)$$

Goal: find $\mu \in \mathbb{R}$ such that $\mathsf{Tr}\left((h + V_{\rho_{\gamma_2}} - \mu)\gamma_1\right) \geq 0$.

For any $\gamma_1, \gamma_2 \in \mathcal{M}_{N_{el}}$,

$$E(\gamma_2) - E(\gamma_1) \leq \operatorname{Tr}\left((h + V_{\rho\gamma_2} - \mu)\gamma_2\right)$$

Goal: find $\mu \in \mathbb{R}$ such that $\text{Tr}\left((h + V_{\rho_{\gamma_2}} - \mu)\gamma_1\right) \geq 0$.

Strategy / Ideas :

- We aim to apply this bound along SCF iterations, that is $\gamma_2 = \gamma_{N,m}$ and $\gamma_1 = \gamma$, the *exact* ground-state density matrix on $\mathcal{M}_{N_{el}}$.
- Then, the upper bound does not rely on γ .
- ► To derive such a μ , one actually needs to study the linear operator $A = h + V_{\rho_{\gamma_N}} = H_{\rho_{\gamma_N}}$.

Introduction

A posteriori analysis of the abstract problem

Guaranteed and computable bounds for the energy

Numerical results

Conclusion

Let A be a general self-adjoint linear operator on \mathcal{H} , bounded below and with compact resolvent.

.

Infinite dimensional problem

Variational approximation

$$\begin{cases} \mathbf{A}\varphi_{i} = \varepsilon_{i}\varphi_{i}, \quad \varepsilon_{1} \leqslant \varepsilon_{2} \leqslant \cdots \leqslant \varepsilon_{N_{\text{el}}} \\ \langle \varphi_{i}, \varphi_{j} \rangle = \delta_{ij}, \\ \gamma^{0} = \sum_{i=1}^{N_{\text{el}}} |\varphi_{i}\rangle\langle\varphi_{i}|, \end{cases}$$

$$\begin{cases} \prod_{N} A \prod_{N} \varphi_{i,N} = \varepsilon_{i,N} \varphi_{i,N}, & \varepsilon_{1,N} \leq \varepsilon_{2,N} \leq \cdots \leq \varepsilon_{N_{el},N} \\ \langle \varphi_{i,N}, \varphi_{j,N} \rangle = \delta_{ij}, \\ \gamma_{N}^{0} = \sum_{i=1}^{N_{el}} |\varphi_{i,N}\rangle \langle \varphi_{i,N}|. \end{cases}$$

¹E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralik. *Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters*, Mathematics of Computation (2020).

Let A be a general self-adjoint linear operator on \mathcal{H} , bounded below and with compact resolvent.

Infinite dimensional problem

Variational approximation

Theorem¹

It holds

4

$$0 \leq \sum_{i=1}^{N_{\mathrm{el}}} (\varepsilon_{i,N} - \varepsilon_i) \leq \eta^2$$

where, for $r_{i,N} = A\varphi_{i,N} - \varepsilon_{i,N}\varphi_{i,N}$,

$$\eta^{2} = \sum_{i=1}^{N_{el}} \langle r_{i,N}, A^{-1}r_{i,N} \rangle + 2\varepsilon_{N_{el},N} c_{N}^{2} \sum_{i=1}^{N_{el}} \langle A^{-1}r_{i,N}, A^{-1}r_{i,N} \rangle$$

¹E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralik. *Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters*, Mathematics of Computation (2020).

Let A be a general self-adjoint linear operator on \mathcal{H} , bounded below and with compact resolvent.

Infinite dimensional problem

$$\begin{cases} \mathsf{A}\varphi_{i} = \varepsilon_{i}\varphi_{i}, \quad \varepsilon_{1} \leqslant \varepsilon_{2} \leqslant \cdots \leqslant \varepsilon_{\mathsf{N}_{\mathsf{el}}} \\ \langle \varphi_{i}, \varphi_{j} \rangle = \delta_{ij}, \\ \gamma^{0} = \sum_{i=1}^{\mathsf{N}_{\mathsf{el}}} |\varphi_{i}\rangle\langle\varphi_{i}|, \end{cases}$$

Theorem¹

It holds

$$0 \leq \sum_{i=1}^{N_{\mathrm{el}}} (\varepsilon_{i,N} - \varepsilon_i) \leq \eta^2$$

where, for $r_{i,N} = A\varphi_{i,N} - \varepsilon_{i,N}\varphi_{i,N}$,

$$\eta^{2} = \sum_{i=1}^{N_{el}} \langle r_{i,N}, A^{-1}r_{i,N} \rangle + 2\varepsilon_{N_{el},N} c_{N}^{2} \sum_{i=1}^{N_{el}} \langle A^{-1}r_{i,N}, A^{-1}r_{i,N} \rangle$$

Variational approximation

 $\begin{cases} \prod_{N} A \prod_{N} \varphi_{i,N} = \varepsilon_{i,N} \varphi_{i,N}, & \varepsilon_{1,N} \leqslant \varepsilon_{2,N} \leqslant \cdots \leqslant \varepsilon_{N_{el},N} \\ \langle \varphi_{i,N}, \varphi_{j,N} \rangle = \delta_{ij}, \\ \gamma_{N}^{0} = \sum_{i=1}^{N_{el}} |\varphi_{i,N}\rangle \langle \varphi_{i,N}|. \end{cases}$

► A > 0

Continuous-discrete gap condition

 $\varepsilon_{N_{\rm el}} \leq \varepsilon_{N_{\rm el},N} < \underline{\varepsilon_{N_{\rm el}+1}} \leq \varepsilon_{N_{\rm el}+1} \leq \varepsilon_{N_{\rm el}+1,N}$

Fully computable constant:

$$c_{\textit{N}} \coloneqq \left(1 - \frac{\varepsilon_{\textit{N}_{el},\textit{N}}}{\frac{\varepsilon_{\textit{N}_{el}+1}}{2}}\right)^{-1}$$

- Beware of the gap!
- $A > -\frac{1}{2}\Delta + 1$ would not help.

¹E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralik. *Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters*, Mathematics of Computation (2020).

Infinite dimensional problem

Variational approximation

$$0 \leq \sum_{i=1}^{N_{\mathrm{el}}} (arepsilon_{i,N} - arepsilon_i) \leq \eta^2 \quad \Leftrightarrow \quad \mu \coloneqq rac{1}{N_{\mathrm{el}}} \left(\sum_{i=1}^{N_{\mathrm{el}}} arepsilon_{i,N} - \eta^2
ight) \leq rac{1}{N_{\mathrm{el}}} \sum_{i=1}^{N_{\mathrm{el}}} arepsilon_i$$

Infinite dimensional problem

Variational approximation

$$0 \leq \sum_{i=1}^{N_{\rm el}} (\varepsilon_{i,N} - \varepsilon_i) \leq \eta^2 \quad \Leftrightarrow \quad \mu \coloneqq \frac{1}{N_{\rm el}} \Big(\sum_{i=1}^{N_{\rm el}} \varepsilon_{i,N} - \eta^2 \Big) \leq \frac{1}{N_{\rm el}} \sum_{i=1}^{N_{\rm el}} \varepsilon_{i,N} - \eta^2 \Big)$$

•
$$\gamma^0$$
 minimises $\gamma \mapsto \text{Tr}(A\gamma)$ over $\mathcal{M}_{N_{\text{el}}}$.

▶ For any $\gamma \in \mathcal{M}_{N_{el}}$,

$$\mathsf{Tr}\left((\mathcal{A}-\mu)\gamma
ight) \geq \mathsf{Tr}(\mathcal{A}\gamma_0) - \mu N_{\mathsf{el}} \geq \sum_{i=1}^{N_{\mathsf{el}}} arepsilon_i - \sum_{i=1}^{N_{\mathsf{el}}} arepsilon_i = 0.$$

• Such a μ therefore satisfies

 $\forall \ \gamma \in \mathcal{M}_{N_{\mathsf{el}}}, \quad \mathsf{Tr}\left((A-\mu)\gamma\right) \geq 0.$

Fully guaranteed error bounds on the energy

► Recall $E(\gamma_2) - E(\gamma_1) \leq \text{Tr}\left((h + V_{\rho_{\gamma_2}} - \mu)\gamma_2\right)$ and take $\gamma_2 = \gamma_{N,m}$ and $\gamma_1 = \gamma$.

• Apply the previous strategy to $A = H_{N,m} := H_{\rho\gamma_{N,m}}$.

► This gives, with $\mu_{N,m+1} = \frac{1}{N_{el}} \left(\sum_{i=1}^{N_{el}} \varepsilon_{i,N,m+1} - \eta^2 \right)$ computed from the eigendecomposition of $H_{N,m}$:

 $E(\gamma_{N,m}) - E(\gamma) \leq \operatorname{Tr}\left((H_{N,m} - \mu_{N,m+1})\gamma_{N,m}\right)$

Fully guaranteed error bounds on the energy

► Recall $E(\gamma_2) - E(\gamma_1) \leq \text{Tr}\left((h + V_{\rho_{\gamma_2}} - \mu)\gamma_2\right)$ and take $\gamma_2 = \gamma_{N,m}$ and $\gamma_1 = \gamma$.

• Apply the previous strategy to $A = H_{N,m} := H_{\rho_{\gamma_{N,m}}}$.

► This gives, with $\mu_{N,m+1} = \frac{1}{N_{\text{el}}} \left(\sum_{i=1}^{N_{\text{el}}} \varepsilon_{i,N,m+1} - \eta^2 \right)$ computed from the eigendecomposition of $H_{N,m}$:

$$E(\gamma_{N,m}) - E(\gamma) \leq \operatorname{Tr}\left((H_{N,m} - \mu_{N,m+1})\gamma_{N,m}\right)$$

Theorem

At iteration *m* of the SCF in \mathcal{V}_N , it holds

$${\it E}(\gamma_{{\it N},m})-{\it E}(\gamma) \leq {\it err}_{{\it N},m}^{\it disc}+{\it err}_{{\it N},m}^{\it SCF}$$

where

$$\mathrm{err}_{N,m}^{\mathrm{disc}} = \mathrm{Tr}\left((H_{N,m} - \mu_{N,m+1})\gamma_{N,m+1}\right) \quad \text{and} \quad \mathrm{err}_{N,m}^{\mathrm{SCF}} = \mathrm{Tr}(H_{N,m}\gamma_{N,m}) - \mathrm{Tr}(H_{N,m}\gamma_{N,m+1})\gamma_{N,m+1}$$

Note: $\operatorname{err}_{N,m}^{\mathsf{SCF}} \to 0$ as $m \to +\infty$ and $\operatorname{err}_{N,m}^{\mathsf{disc}} \to 0$ as $N \to +\infty$.

Computing μ

$$\mu \coloneqq \frac{1}{N_{\text{el}}} \left(\sum_{i=1}^{N_{\text{el}}} \varepsilon_{i,N} - \eta^2 \right) \quad \text{with} \quad \eta^2 = \sum_{i=1}^{N_{\text{el}}} \langle r_{i,N}, A^{-1}r_{i,N} \rangle + 2\varepsilon_{N_{\text{el}},N} c_N^2 \sum_{i=1}^{N_{\text{el}}} \langle A^{-1}r_{i,N}, A^{-1}r_{i,N} \rangle$$

• Computing $A^{-1}r_{i,N}$ requires full inversion of the linear operator A.

- ► $\varphi_{i,N} \in \mathcal{V}_N \Rightarrow r_{i,N} = A\varphi_{i,N} \varepsilon_{i,N}\varphi_{i,N} \in \mathcal{V}_N^{\perp}$ (*linear* eigenproblems are exactly solved).
- This suggests to decompose $\mathcal{H} = \mathcal{V}_N \oplus \mathcal{V}_N^{\perp}$ and write

$$A = H_0 + W \coloneqq \begin{bmatrix} \Pi_N h \Pi_N & 0\\ 0 & \Pi_N^{\perp} (-\frac{1}{2}\Delta) \Pi_N^{\perp} \end{bmatrix} + \begin{bmatrix} 0 & \Pi_N V \Pi_N^{\perp} \\ \Pi_N^{\perp} V \Pi_N & \Pi_N^{\perp} V \Pi_N^{\perp} \end{bmatrix}$$

Thus, assuming $\|H_0^{-1}W\| < 1$, A^{-1} is obtained by a Neumann series, involving only $H_0^{-1} =$ full inversion in $\mathcal{V}_N +$ diagonal inversion in \mathcal{V}_N^{\perp} :

$$A^{-1} = \sum_{n=1}^{+\infty} (-H_0^{-1}W)^n H_0^{-1}$$

$\text{Computing } \mu$

$$\mu := \frac{1}{N_{\rm el}} \left(\sum_{i=1}^{N_{\rm el}} \varepsilon_{i,N} - \eta^2 \right) \quad \text{with} \quad \eta^2 = \sum_{i=1}^{N_{\rm el}} \langle r_{i,N}, \mathbf{A}^{-1} r_{i,N} \rangle + 2\varepsilon_{N_{\rm el},N} c_N^2 \sum_{i=1}^{N_{\rm el}} \langle \mathbf{A}^{-1} r_{i,N}, \mathbf{A}^{-1} r_{i,N} \rangle$$

Write
$$A^{-1} = \sum_{n=1}^{+\infty} (-H_0^{-1}W)^n H_0^{-1}$$
 with $H_0 = \begin{bmatrix} \Pi_N h \Pi_N & 0\\ 0 & \Pi_N^{\perp} (-\frac{1}{2}\Delta) \Pi_N^{\perp} \end{bmatrix}$ and $W = \begin{bmatrix} 0 & \Pi_N V \Pi_N^{\perp} \\ \Pi_N^{\perp} V \Pi_N & \Pi_N^{\perp} V \Pi_N^{\perp} \end{bmatrix}$

zeroth order approximation

$$\eta_0^2 = \sum_{i=1}^{N_{\rm el}} \langle r_{i,N}, H_0^{-1} r_{i,N} \rangle + 2\varepsilon_{N_{\rm el},N} c_N^2 \sum_{i=1}^{N_{\rm el}} \langle H_0^{-1} r_{i,N}, H_0^{-1} r_{i,N} \rangle$$

first order approximation

$$\eta_1^2 = \sum_{i=1}^{N_{el}} \langle r_{i,N}, H_0^{-1} - H_0^{-1} W H_0^{-1} r_{i,N} \rangle + 2\varepsilon_{N_{el},N} c_N^2 \sum_{i=1}^{N_{el}} \langle H_0^{-1} - H_0^{-1} W H_0^{-1} r_{i,N}, H_0^{-1} - H_0^{-1} W H_0^{-1} r_{i,N} \rangle$$

Computing μ

$$\mu := \frac{1}{N_{\rm el}} \left(\sum_{i=1}^{N_{\rm el}} \varepsilon_{i,N} - \eta^2 \right) \quad \text{with} \quad \eta^2 = \sum_{i=1}^{N_{\rm el}} \langle r_{i,N}, \mathbf{A}^{-1} r_{i,N} \rangle + 2\varepsilon_{N_{\rm el},N} c_N^2 \sum_{i=1}^{N_{\rm el}} \langle \mathbf{A}^{-1} r_{i,N}, \mathbf{A}^{-1} r_{i,N} \rangle$$

Write
$$A^{-1} = \sum_{n=1}^{+\infty} (-H_0^{-1}W)^n H_0^{-1}$$
 with $H_0 = \begin{bmatrix} \Pi_N h \Pi_N & 0\\ 0 & \Pi_N^{\perp} (-\frac{1}{2}\Delta) \Pi_N^{\perp} \end{bmatrix}$ and $W = \begin{bmatrix} 0 & \Pi_N V \Pi_N^{\perp} \\ \Pi_N^{\perp} V \Pi_N & \Pi_N^{\perp} V \Pi_N^{\perp} \end{bmatrix}$

zeroth order approximation

1.00

$$\eta_0^2 = \sum_{i=1}^{N_{\rm el}} \langle r_{i,N}, H_0^{-1} r_{i,N} \rangle + 2\varepsilon_{N_{\rm el},N} c_N^2 \sum_{i=1}^{N_{\rm el}} \langle H_0^{-1} r_{i,N}, H_0^{-1} r_{i,N} \rangle$$

first order approximation

$$\eta_{1}^{2} = \sum_{i=1}^{N_{el}} \langle r_{i,N}, H_{0}^{-1} - H_{0}^{-1} W H_{0}^{-1} r_{i,N} \rangle + 2\varepsilon_{N_{el},N} c_{N}^{2} \sum_{i=1}^{N_{el}} \langle H_{0}^{-1} - H_{0}^{-1} W H_{0}^{-1} r_{i,N}, H_{0}^{-1} - H_{0}^{-1} W H_{0}^{-1} r_{i,N} \rangle$$

 \rightsquigarrow Each η yields a different bound.

 \rightsquigarrow Estimating the remainders of the Neumann series guarantees the bound.

Name	Notation	Fully guaranteed	Computational cost
full inversion	η	yes	full inversion of A in $\mathcal H$
zeroth order	η_0	no	diagonal inversion in \mathcal{V}_N^\perp
zeroth order guaranteed	$\eta_{0,g}$	yes	diagonal inversion in $\mathcal{V}_{\mathcal{N}}^{\perp}$ + remainder estimation
first order	η_1	no	full inversion in \mathcal{V}_N
first order guaranteed	$\eta_{1,g}$	yes	full inversion in \mathcal{V}_N + remainder estimation

Introduction

A posteriori analysis of the abstract problem

Guaranteed and computable bounds for the energy

Numerical results

Conclusion

Computational framework

- rHF model: $F(\rho) = \frac{1}{2}\mathcal{D}(\rho, \rho)$ (no xc).
- ▶ Discretization parameter $E_{cut} \in \mathbb{R}$ and $N = \sqrt{2E_{cut}}$:

$$\mathcal{V}_{N} = \text{Span} \left\{ e_{\boldsymbol{G}}, \ |\boldsymbol{G}| \leq N
ight\} = \text{Span} \left\{ e_{\boldsymbol{G}}, \ \frac{1}{2} |\boldsymbol{G}|^{2} \leq \mathsf{E}_{\mathsf{cut}}
ight\}.$$

- ▶ Hierarchy of subspaces: $\mathcal{V}_N \subset \mathcal{V}_{N_{ref}}$ and $\mathcal{V}_{N_{ref}} = \mathcal{V}_N \oplus \mathcal{V}_N^{\perp}$.
 - ▶ \mathcal{V}_N : approximation space for γ_N from SCF iterations and its orbitals $\varphi_{i,N} \in \mathcal{V}_N$;
 - ▶ $\mathcal{V}_{N_{\text{ref}}} \approx \mathcal{H}$: reference space for the "true" solution γ and the residuals $r_{i,N} \in \mathcal{V}_N^{\perp}$.
- We track

 $E(\gamma_{N,m}) - E(\gamma) \leq \operatorname{err}_{N,m}^{\operatorname{disc}} + \operatorname{err}_{N,m}^{\operatorname{SCF}}$

along the SCF iterations: 1D toy system and 3D systems.

$$\blacktriangleright H_{\rho} = -\frac{1}{2}\Delta + V + V_{\mathsf{H}}[\rho], \forall G \in 2\pi\mathbb{Z}, \ \hat{V}_{G} = \begin{cases} 0 & \text{if } G = 0, \\ \frac{\sin(G)}{|G|^{2}} & \text{if } G \neq 0. \end{cases} \\ \blacktriangleright E_{\mathsf{cut}} = 400 \text{ Ha}, \ E_{\mathsf{cut},\mathsf{ref}} = 1000 \text{ Ha}.$$

$$H_{\rho} = -\frac{1}{2}\Delta + V + V_{H}[\rho], \forall G \in 2\pi\mathbb{Z}, \hat{V}_{G} = \begin{cases} 0 & \text{if } G = 0, \\ \frac{\sin(G)}{|G|^{2}} & \text{if } G \neq 0. \end{cases}$$

$$E_{cut} = 400 \text{ Ha}, E_{cut,ref} = 1000 \text{ Ha}.$$

$$I_{0}^{0} = \int_{0}^{0} \frac{1}{7} \int_{0}^{0} \frac{1}{14} \int_{0}^{0} \frac{1}{21} \int_{0}^{0} \frac{1}{28} \int_{0}^{0} \frac{1}{28$$

3D system and Brillouin zone sampling

- ► $H_{\rho} = -\frac{1}{2}\Delta + V + V_{\rho}$ with $V \in L^{\infty}_{\#}(\Omega)$: H_{ρ} is unbounded, self-adjoint operator on $L^{2}(\mathbb{R}^{3}) \Rightarrow$ purely continuous spectrum.
- Bloch transform saves us here²: spectral properties of H_ρ can be deduced from those of its Bloch fibers {H_{ρ,k}, k ∈ B} with H_{ρ,k} = ½(-i∇ + k)² + V + V_ρ: self-adjoint operators on L²_#(Ω), bounded below and with compact resolvent ⇒ purely discrete spectrum.

$$\forall \mathbf{k} \in \mathcal{B}, \quad \begin{cases} H_{\rho, \mathbf{k}} \varphi_{i, \mathbf{k}} = \varepsilon_{i, \mathbf{k}} \varphi_{i, \mathbf{k}} \\ \langle \varphi_{i, \mathbf{k}}, \varphi_{j, \mathbf{k}} \rangle = \delta_{ij} \\ \rho(\mathbf{r}) = \int_{\mathcal{B}} \sum_{i=1}^{N_{\text{el}}} |\varphi_{i, \mathbf{k}}(\mathbf{r})|^2 \mathrm{d}\mathbf{k}. \end{cases}$$

 \blacktriangleright Everything works the same, with additional (discrete) summation over the Brillouin zone ${\cal B}$ and energy

$$E(\gamma) = \underline{\mathrm{Tr}}(h\gamma) + F(\rho) = \int_{\mathcal{B}} \mathrm{Tr}(h_k \gamma_k) \mathrm{d}k + F(\rho).$$

Quadrature errors in the Brillouin zone are not taken into account.

²M. Reed and B. Simon, Methods of modern mathematical physics IV: Analysis of operators (1978).

Silicon crystal

GTH pseudo-potentials.

 \blacktriangleright E_{cut} = 150 Ha, E_{cut,ref} = 400 Ha.

$$1 \leq rac{ { t err}_{{m N},m}^{{ t disc}} + { t err}_{{m N},m}^{{ t SCF}} }{ {m E}(\gamma_{{m N},m}) - {m E}(\gamma)}$$

SCF iteration	η_0	η_1	η
1	1.49189	1.49189	1.49189
2	1.19664	1.19664	1.19664
3	1.2833	1.2833	1.2833
4	1.47476	1.47476	1.47477
5	1.29028	1.29027	1.29029
6	1.24633	1.24614	1.24653
7	1.48771	1.48627	1.48924
8	1.03934	1.01782	1.06222
9	0.969748	0.934911	1.0068
10	0.958761	0.92304	0.996747
11	0.964904	0.927294	1.0049
12	0.969945	0.932188	1.01009
13	0.970363	0.932678	1.01044
14	0.970012	0.932278	1.01014

What about nonconvex models ?

► GTH pseudo-potentials + LDA.

$$E_{cut} = 200 \text{ Ha and } E_{cut,ref} = 600 \text{ Ha}. \qquad P 2 \times 2 \times 2 \text{ } \textbf{\textit{k}} \text{ grid}.$$

$$1 \leq rac{\mathtt{err}_{\mathcal{N},m}^{\mathsf{disc}} + \mathtt{err}_{\mathcal{N},m}^{\mathsf{SCF}}}{E(\gamma_{\mathcal{N},m}) - E(\gamma)}$$

SCF iteration	η_0	η_1	η
1	1.3006	1.3006	1.3006
2	0.99266	0.99266	0.99266
3	0.992485	0.992485	0.992485
4	1.0224	1.0224	1.0224
5	1.06986	1.06985	1.06986
6	1.07511	1.07444	1.07581
7	0.863428	0.854739	0.872515
8	0.659905	0.638829	0.681944
9	0.79568	0.772953	0.819459
10	0.806511	0.78376	0.830315
11	0.779004	0.756219	0.802843
12	0.774807	0.752123	0.79854
13	0.79293	0.769954	0.81697
14	0.79858	0.77594	0.822268

Conclusion and take-home messages

- Combining estimates for clusters of eigenvalues and convex models, we obtained guaranteed estimates on the energy of solutions to Kohn–Sham equations.
- Computing the full guaranteed is not tractable \Rightarrow approximation by means of Neumann series.
- Best ratio accuracy / computational cost: 0th order approximation of the discretization error.
- General message³ is to find a good balance between *mathematics* (guaranteed bounds) and *usage* (computable bounds, for a reasonable cost).

Perspectives and ideas:

- Adaptive schemes.
- Finite temperature.
- Better control on the remainder terms.
- Extension to nonconvex models.
- Other quantities of interest.

³Cancès, Dusson, Kemlin, Levitt, *Practical error bounds for properties in plane-wave electronic structure calculations*, SIAM Journal on Scientific Computing 44 (2022).

Merci!

Andrea Eric Bordignon Cancès (ENPC & Inria) (ENPC & Inria) Geneviève Dusson (CNRS & UBFC) Rafael Lainez (Stuttgart)

Benjamin Stamm (Stuttgart)