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Functional setting

▶ Periodic lattice R = Za1 + Za2 + Za3 for (a1, a2, a3) a basis of R3.
▶ Unit cell Ω = [0, 1)a1 + [0, 1)a2 + [0, 1)a3.
▶ Reciprocal lattice R∗ = Zb1 + Zb2 + Zb3 where ai · bj = 2πδij .
▶ Hilbert space H = L2

#(Ω), with scalar product ⟨·, ·⟩.
▶ Orthonormal basis of H given by Fourier modes:

H :=
{

u ∈ L2
loc(R3), u is R-periodic

}
= Span

{
r 7→ eG (r) :=

1√
|Ω|

eıG·r , G ∈ R∗

}
▶ Sobolev spaces:

∀ s ∈ R, Hs
#(Ω) :=

{
u(x) =

∑
G∈R∗

ûG eG (x),
∑

G∈R∗

(
1 +

|G|2

2

)s
|ûG |2 < +∞, û−G = û∗

G

}
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Quantum mechanics of a single electron
In atomic units, with no spin, we look at the PDE in ψ(·, t) ∈ H

ı∂tψ(x , t) = −
1
2

∆ ψ(x , t) + V (x) ψ(x , t) =: ( h ψ)(x , t)

kinetic operator
potential
(time-independent)

Hamiltonian

▶ ∥ψ(·, t)∥ = 1.
▶ Stationary states ψ(x , t) = e−ıεtφ(x) where{

hφ = εφ,

∥φ∥ = 1.

▶ Ground-state energy: E⋆ = min
∥φ∥=1

⟨φ, hφ⟩.

▶ Ground-state density: ρ⋆(x) = |φ(x)|2.

(Wikipedia)
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Quantum mechanics of noninteracting electrons

Consider a system of Nel noninteracting electrons:
▶ Pauli exclusion principle ⇝ two electrons cannot be in the same quantum state.
▶ Ground-state ⇝ electrons fill the Nel lowest energy states (Aufbau principle).

{
hφi = εiφi , ε1 ≤ · · · ≤ εNel ,

⟨φi , φj ⟩ = δij ,
h := −

1
2

∆ + V .

▶ Ground-state energy: E⋆ =
Nel∑
i=1

εi .

▶ Ground-state density: ρ⋆(x) =
Nel∑
i=1

|φi (x)|2, with
ˆ

Ω
ρ⋆(x)dx = Nel.

• ε1

• ε2

...
• εNel

εNel+1

εNel+2

...
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Density matrices
Orbitals (φi )1≤n≤Nel are not unique (degeneracies) ⇝ better to work
with the orthogonal projector onto the space they span :

γ⋆ =
Nel∑
i=1

|φi ⟩⟨φi |, Ran(γ⋆) = Span(φi )1≤n≤Nel ,

ρ⋆(x) = γ⋆(x , x).

▶ γ⋆ is a rank Nel orthogonal projector (density matrix):

γ⋆ ∈ MNel :=
{
γ ∈ S(H), Ran(γ) ⊂ H1

#(Ω),

γ∗ = γ = γ2, Tr(γ) = Nel

}
▶ The ground-state energy reads

E⋆ =
Nel∑
i=1

εi =
Nel∑
i=1

⟨φi , hφi ⟩ =
Nel∑
i=1

Tr(h|φi ⟩⟨φi |) = Tr(hγ⋆)

and moreover Tr(hγ⋆) = minγ∈MNel
Tr(hγ).

{
hφi = εiφi , ε1 ≤ · · · ≤ εNel ,

⟨φi , φj ⟩ = δij .

Notations for γ ∈ MNel

If ψ ∈ H = Ran(γ) ⊕ Ran(1 − γ),

γψ =

Nel∑
i=1

⟨φi , ψ⟩φi =

Nel∑
i=1

|φi ⟩⟨φi |ψ⟩

γ(x , y) =

Nel∑
i=1

φi (x)φ∗
i (y).
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Interacting electrons and DFT

General form of the energy

E(γ) := Tr (hγ) + F (ργ)

linear term nonlinear term

▶ γ ∈ MNel is a trial density matrix;
▶ h = − 1

2 ∆ + V is the core Hamiltonian;
▶ F models the electron-electron interaction and

depends only on the electronic density ργ .

General framework:

min
γ∈MNel

Tr(hγ) + F (ργ)

Density functional theory (DFT)

F (ργ) =
1
2

D(ργ , ργ) + Exc(ργ)

where ργ(x) = γ(x , x) and

D(ρ, ρ) =
¨

Ω×Ω

ρ(x)ρ(y)
|x − y |

dxdy .
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Kohn–Sham equations

Linearization
For every γ ∈ MNel , there exists (under reasonable assumptions) Vργ ∈ L∞

# (Ω) such that

∀ γ̂ ∈ MNel , ⟨F ′(ργ), ργ̂⟩H′,H = Tr(Vργ γ̂).

First order optimality conditions
Find (φi , εi )i=1,...,Nel ∈ (H1

#(Ω) × R)Nel such that


Hργφi := (− 1

2 ∆ + V ) φi + Vργ φi = εiφi , ε1 ⩽ ε2 ⩽ · · · ⩽ εNel ,

⟨φi , φj ⟩ = δij ,

γ =
Nel∑
i=1

|φi ⟩⟨φi |.

Kinetic energy and external potential

Nonlinear term coming from the e-e interaction
Vρ(x) = VH[ρ] + Vxc [ρ].

Kohn–Sham Hamiltonian

Hργ := h + Vργ
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Discretization

▶ Finite dimensional subspace of H1
#(Ω): for N ∈ R,

VN = Span {eG , |G| ≤ N}.

▶ Galerkin approximation

min
{

E(γ), γ ∈ MNel , Ran(γ) ⊂ VN
}

Discrete Kohn–Sham equations
Find (φi,N , εi,N)i=1,...,Nel ∈ (VN × R)Nel such that

ΠNHργN
ΠNφi,N = εi,Nφi,N , ε1,N ⩽ ε2,N ⩽ · · · ⩽ εNel,N ,

⟨φi,N , φj,N⟩ = δij ,

γN =
Nel∑
i=1

|φi,N⟩⟨φi,N |.
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Self-consistent field (SCF) iterations

SCF iterations
ΠNHργN,m

ΠNφi,N,m+1 = εi,N,m+1φi,N,m+1, ε1,N,m+1 ⩽ ε2,N,m+1 ⩽ · · · ⩽ εNel,N,m+1,

⟨φi,N,m+1, φj,N,m+1⟩ = δij ,

γN,m =
Nel∑
i=1

|φi,N,m+1⟩⟨φi,N,m+1|.

▶ Does not converge most of the time.
▶ Lost of tricks should be used: mixing, preconditionning, acceleration, . . .
▶ Arise from a minimization problem ⇝ more and more applications coming from Riemanian optimization,

not considered here.
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Problem formulation and existing results

Questions
▶ Can we upper bound E(γN,m) − E(γ) by

computable quantities ? They should depend
on N and m and go to 0 as N,m → +∞.

▶ Are these bounds satisfactory ? How to use
them in practice ?

Two main difficulties
▶ Cluster of eigenvalues.
▶ Nonlinearity of the energy functional.

▶ Error control for eigenvalues of linear operators is already well established. (Kato–Temple bound, Forsythe
(1954), Weinberger (1956), Bazley and Fox (1961), Hu, Huang, Lin and Shen (2014), Larson (2000), Liu (2015))

▶ Electronic structure. (works by Cancès, Dusson, Maday, Stamm, Vohralik, Levitt, Herbst. . . )
▶ Fewer results for nonlinear models. (Gross–Pitaevskii, see Maday and Dusson (2017), see also Chen, He and Zhou

(2011))
▶ Nonguaranteed bounds for nonlinear models and quantities of interest. (Cancès, Dusson, Kemlin, Levitt (2022))
▶ Dusson and Maday, An overview of a posteriori error estimation and post-processing methods for nonlinear

eigenvalue problems, JCP 491 (2023).
▶ Adaptive methods. (Dai, Pan, Yang and Zhou (2021) for linear eigenvalue problems with plane-wave discretization or

Liu, Chen, Dusson, Fang and Gao (2022) for a recent application to Kohn–Sham models, see also Hassan, Maday and
Wang (2024))
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A posteriori analysis

Lemma
For any µ ∈ R, any γ1, γ2 ∈ MNel , it holds

E(γ2) − E(γ1) = Tr
(

(h + Vργ2
− µ)γ2

)
− Tr

(
(h + Vργ2

− µ)γ1
)

−
(

F (ργ1 ) − F (ργ2 ) − ⟨F ′(ργ2 ), ργ1 − ργ2 ⟩H′,H

)

Proof:
▶ For any µ ∈ R, Tr(µγ1) = µNel = Tr(µγ2).
▶ ⟨F ′(ργ2 ), ργ1 − ργ2 ⟩H′,H = Tr

(
Vργ2

(γ1 − γ2)
)

.
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A posteriori analysis

Assumption
The nonlinearity F is convex: ∀ γ1, γ2 ∈ MNel ,

F (ργ1 ) − F (ργ2 ) − ⟨F ′(ργ2 ), ργ1 − ργ2 ⟩H′,H ≤ 0.

Convex models in KS-DFT
▶ rHF is convex F (ρ) = 1

2 D(ρ, ρ).
▶ LDA is not Exc(ρ) = −c

´
Ω ρ

4/3.

Corollary
For any µ ∈ R, any γ1, γ2 ∈ MNel , it holds

E(γ2) − E(γ1) ≤ Tr
(

(h + Vργ2
− µ)γ2

)
− Tr

(
(h + Vργ2

− µ)γ1
)
.

Moreover, if we choose µ ∈ R such that Tr
(

(h + Vργ2
− µ)γ1

)
≥ 0, then

E(γ2) − E(γ1) ≤ Tr
(

(h + Vργ2
− µ)γ2

)
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A posteriori analysis

For any γ1, γ2 ∈ MNel ,

E(γ2) − E(γ1) ≤ Tr
(

(h + Vργ2
− µ)γ2

)

Goal: find µ ∈ R such that Tr
(

(h + Vργ2
− µ)γ1

)
≥ 0.

Strategy / Ideas :
▶ We aim to apply this bound along SCF iterations, that is γ2 = γN,m and γ1 = γ, the exact ground-state

density matrix on MNel .
▶ Then, the upper bound does not rely on γ.
▶ To derive such a µ, one actually needs to study the linear operator A = h + VργN,m

= HργN,m
.
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Choosing µ

Let A be a general self-adjoint linear operator on H, bounded below and with compact resolvent.

Infinite dimensional problem Variational approximationAφi = εiφi , ε1 ⩽ ε2 ⩽ · · · ⩽ εNel
⟨φi , φj ⟩ = δij ,

γ0 =
∑Nel

i=1 |φi ⟩⟨φi |,

ΠNAΠNφi,N = εi,Nφi,N , ε1,N ⩽ ε2,N ⩽ · · · ⩽ εNel,N
⟨φi,N , φj,N⟩ = δij ,

γ0
N =

∑Nel
i=1 |φi,N⟩⟨φi,N |.

Theorem1

It holds

0 ≤
Nel∑
i=1

(εi,N − εi ) ≤ η2

where, for ri,N = Aφi,N − εi,Nφi,N ,

η2 =
Nel∑
i=1

⟨ri,N ,A−1ri,N⟩ + 2εNel,Nc2
N

Nel∑
i=1

⟨A−1ri,N ,A−1ri,N⟩

▶ A > 0
▶ Continuous-discrete gap condition

εNel ≤ εNel,N < εNel+1 ≤ εNel+1 ≤ εNel+1,N

▶ Fully computable constant:

cN :=
(

1 −
εNel,N

εNel+1

)−1

▶ Beware of the gap!
▶ A > − 1

2 ∆ + 1 would not help.

1E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralik. Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities
and clusters, Mathematics of Computation (2020).

13 / 24



Choosing µ

Let A be a general self-adjoint linear operator on H, bounded below and with compact resolvent.

Infinite dimensional problem Variational approximationAφi = εiφi , ε1 ⩽ ε2 ⩽ · · · ⩽ εNel
⟨φi , φj ⟩ = δij ,

γ0 =
∑Nel

i=1 |φi ⟩⟨φi |,

ΠNAΠNφi,N = εi,Nφi,N , ε1,N ⩽ ε2,N ⩽ · · · ⩽ εNel,N
⟨φi,N , φj,N⟩ = δij ,

γ0
N =

∑Nel
i=1 |φi,N⟩⟨φi,N |.

Theorem1

It holds

0 ≤
Nel∑
i=1

(εi,N − εi ) ≤ η2

where, for ri,N = Aφi,N − εi,Nφi,N ,

η2 =
Nel∑
i=1

⟨ri,N ,A−1ri,N⟩ + 2εNel,Nc2
N

Nel∑
i=1

⟨A−1ri,N ,A−1ri,N⟩

▶ A > 0
▶ Continuous-discrete gap condition

εNel ≤ εNel,N < εNel+1 ≤ εNel+1 ≤ εNel+1,N

▶ Fully computable constant:

cN :=
(

1 −
εNel,N

εNel+1

)−1

▶ Beware of the gap!
▶ A > − 1

2 ∆ + 1 would not help.

1E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralik. Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities
and clusters, Mathematics of Computation (2020).

13 / 24



Choosing µ

Let A be a general self-adjoint linear operator on H, bounded below and with compact resolvent.

Infinite dimensional problem Variational approximationAφi = εiφi , ε1 ⩽ ε2 ⩽ · · · ⩽ εNel
⟨φi , φj ⟩ = δij ,

γ0 =
∑Nel

i=1 |φi ⟩⟨φi |,

ΠNAΠNφi,N = εi,Nφi,N , ε1,N ⩽ ε2,N ⩽ · · · ⩽ εNel,N
⟨φi,N , φj,N⟩ = δij ,

γ0
N =

∑Nel
i=1 |φi,N⟩⟨φi,N |.

Theorem1

It holds

0 ≤
Nel∑
i=1

(εi,N − εi ) ≤ η2

where, for ri,N = Aφi,N − εi,Nφi,N ,

η2 =
Nel∑
i=1

⟨ri,N ,A−1ri,N⟩ + 2εNel,Nc2
N

Nel∑
i=1

⟨A−1ri,N ,A−1ri,N⟩

▶ A > 0
▶ Continuous-discrete gap condition

εNel ≤ εNel,N < εNel+1 ≤ εNel+1 ≤ εNel+1,N

▶ Fully computable constant:

cN :=
(

1 −
εNel,N

εNel+1

)−1

▶ Beware of the gap!
▶ A > − 1

2 ∆ + 1 would not help.

1E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralik. Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities
and clusters, Mathematics of Computation (2020).

13 / 24



Choosing µ

Infinite dimensional problem Variational approximationAφi = εiφi , ε1 ⩽ ε2 ⩽ · · · ⩽ εNel
⟨φi , φj ⟩ = δij ,

γ0 =
∑Nel

i=1 |φi ⟩⟨φi |,

ΠNAΠNφi,N = εi,Nφi,N , ε1,N ⩽ ε2,N ⩽ · · · ⩽ εNel,N
⟨φi,N , φj,N⟩ = δij ,

γ0
N =

∑Nel
i=1 |φi,N⟩⟨φi,N |.

0 ≤
Nel∑
i=1

(εi,N − εi ) ≤ η2 ⇔ µ :=
1

Nel

( Nel∑
i=1

εi,N − η2
)

≤
1

Nel

Nel∑
i=1

εi

▶ γ0 minimises γ 7→ Tr(Aγ) over MNel .
▶ For any γ ∈ MNel ,

Tr
(

(A − µ)γ
)

≥ Tr(Aγ0) − µNel ≥
Nel∑
i=1

εi −
Nel∑
i=1

εi = 0.

▶ Such a µ therefore satisfies
∀ γ ∈ MNel , Tr

(
(A − µ)γ

)
≥ 0.
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Fully guaranteed error bounds on the energy
▶ Recall E(γ2) − E(γ1) ≤ Tr

(
(h + Vργ2

− µ)γ2
)

and take γ2 = γN,m and γ1 = γ.
▶ Apply the previous strategy to A = HN,m := HργN,m

.

▶ This gives, with µN,m+1 =
1

Nel

( Nel∑
i=1

εi,N,m+1 − η2
)

computed from the eigendecomposition of HN,m:

E(γN,m) − E(γ) ≤ Tr
(

(HN,m − µN,m+1)γN,m
)

Theorem
At iteration m of the SCF in VN , it holds

E(γN,m) − E(γ) ≤ errdisc
N,m + errSCF

N,m

where

errdisc
N,m = Tr

(
(HN,m − µN,m+1)γN,m+1

)
and errSCF

N,m = Tr(HN,mγN,m) − Tr(HN,mγN,m+1)

Note: errSCF
N,m → 0 as m → +∞ and errdisc

N,m → 0 as N → +∞.
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computed from the eigendecomposition of HN,m:

E(γN,m) − E(γ) ≤ Tr
(

(HN,m − µN,m+1)γN,m
)

Theorem
At iteration m of the SCF in VN , it holds

E(γN,m) − E(γ) ≤ errdisc
N,m + errSCF

N,m

where

errdisc
N,m = Tr

(
(HN,m − µN,m+1)γN,m+1

)
and errSCF

N,m = Tr(HN,mγN,m) − Tr(HN,mγN,m+1)

Note: errSCF
N,m → 0 as m → +∞ and errdisc

N,m → 0 as N → +∞.
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Computing µ

µ :=
1

Nel

( Nel∑
i=1

εi,N − η2
)

with η2 =
Nel∑
i=1

⟨ri,N ,A−1ri,N⟩ + 2εNel,Nc2
N

Nel∑
i=1

⟨A−1ri,N ,A−1ri,N⟩

▶ Computing A−1ri,N requires full inversion of the linear operator A.
▶ φi,N ∈ VN ⇒ ri,N = Aφi,N − εi,Nφi,N ∈ V⊥

N (linear eigenproblems are exactly solved).
▶ This suggests to decompose H = VN ⊕ V⊥

N and write

A = H0 + W :=
[ΠNhΠN 0

0 Π⊥
N (− 1

2 ∆)Π⊥
N

]
+

[
0 ΠNV Π⊥

N
Π⊥

N V ΠN Π⊥
N V Π⊥

N

]
Thus, assuming ∥H−1

0 W ∥ < 1, A−1 is obtained by a Neumann series, involving only H−1
0 = full inversion

in VN + diagonal inversion in V⊥
N :

A−1 =
+∞∑
n=1

(−H−1
0 W )nH−1

0
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Nel∑
i=1
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Write A−1 =
+∞∑
n=1

(−H−1
0 W )nH−1

0 with H0 =
[ΠNhΠN 0

0 Π⊥
N (− 1

2 ∆)Π⊥
N

]
and W =

[
0 ΠNV Π⊥

N
Π⊥

N V ΠN Π⊥
N V Π⊥

N

]
▶ zeroth order approximation

η2
0 =

Nel∑
i=1

⟨ri,N ,H−1
0 ri,N⟩ + 2εNel,Nc2

N

Nel∑
i=1

⟨H−1
0 ri,N ,H−1

0 ri,N⟩

▶ first order approximation

η2
1 =

Nel∑
i=1

⟨ri,N ,H−1
0 − H−1

0 WH−1
0 ri,N⟩ + 2εNel,Nc2

N

Nel∑
i=1

⟨H−1
0 − H−1

0 WH−1
0 ri,N ,H−1

0 − H−1
0 WH−1

0 ri,N⟩

⇝ Each η yields a different bound.
⇝ Estimating the remainders of the Neumann series guarantees the bound.
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Overview of the different available bounds

Name Notation Fully Computational cost
guaranteed

full inversion η yes full inversion of A in H
zeroth order η0 no diagonal inversion in V⊥

N

zeroth order η0,g yes diagonal inversion in V⊥
N

guaranteed + remainder estimation
first order η1 no full inversion in VN

first order η1,g yes full inversion in VN
guaranteed + remainder estimation
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Computational framework

▶ rHF model: F (ρ) = 1
2 D(ρ, ρ) (no xc).

▶ Discretization parameter Ecut ∈ R and N =
√

2Ecut:

VN = Span {eG , |G| ≤ N} = Span
{

eG ,
1
2

|G|2 ≤ Ecut

}
.

▶ Hierarchy of subspaces: VN ⊂ VNref and VNref = VN ⊕ V⊥
N .

▶ VN : approximation space for γN from SCF iterations and its orbitals φi,N ∈ VN ;
▶ VNref ≈ H: reference space for the “true” solution γ and the residuals ri,N ∈ V⊥

N .
▶ We track

E(γN,m) − E(γ) ≤ errdisc
N,m + errSCF

N,m

along the SCF iterations: 1D toy system and 3D systems.

DFTK
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1D toy model

▶ Hρ = − 1
2 ∆ + V + VH[ρ], ∀ G ∈ 2πZ, V̂G =

{
0 if G = 0,
sin(G)
|G|2 if G ̸= 0.

▶ Ecut = 400 Ha, Ecut,ref = 1000 Ha.
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3D system and Brillouin zone sampling
▶ Hρ = − 1

2 ∆ + V + Vρ with V ∈ L∞
# (Ω): Hρ is unbounded,

self-adjoint operator on L2(R3) ⇒ purely continuous spectrum.
▶ Bloch transform saves us here2: spectral properties of Hρ can be

deduced from those of its Bloch fibers {Hρ,k , k ∈ B} with
Hρ,k = 1

2 (−ı∇ + k)2 + V + Vρ: self-adjoint operators on L2
#(Ω),

bounded below and with compact resolvent ⇒ purely discrete
spectrum.

∀ k ∈ B,


Hρ,kφi,k = εi,kφi,k
⟨φi,k , φj,k ⟩ = δij

ρ(r) =
 

B

Nel∑
i=1

|φi,k (r)|2dk.

▶ Everything works the same, with additional (discrete) summation
over the Brillouin zone B and energy

E(γ) = Tr(hγ) + F (ρ) =
 

B
Tr(hkγk)dk + F (ρ).

▶ Quadrature errors in the Brillouin zone are not taken into account. (Wikipedia)

2M. Reed and B. Simon, Methods of modern mathematical physics IV: Analysis of operators (1978).
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Silicon crystal

▶ GTH pseudo-potentials. ▶ Ecut = 150 Ha, Ecut,ref = 400 Ha. ▶ 2 × 2 × 2 k grid.

1 ≤
errdisc

N,m + errSCF
N,m

E(γN,m) − E(γ)

SCF iteration η0 η1 η

1 1.49189 1.49189 1.49189
2 1.19664 1.19664 1.19664
3 1.2833 1.2833 1.2833
4 1.47476 1.47476 1.47477
5 1.29028 1.29027 1.29029
6 1.24633 1.24614 1.24653
7 1.48771 1.48627 1.48924
8 1.03934 1.01782 1.06222
9 0.969748 0.934911 1.0068
10 0.958761 0.92304 0.996747
11 0.964904 0.927294 1.0049
12 0.969945 0.932188 1.01009
13 0.970363 0.932678 1.01044
14 0.970012 0.932278 1.01014
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What about nonconvex models ?

▶ GTH pseudo-potentials + LDA. ▶ Ecut = 200 Ha and Ecut,ref = 600 Ha. ▶ 2 × 2 × 2 k grid.

1 ≤
errdisc

N,m + errSCF
N,m

E(γN,m) − E(γ)

SCF iteration η0 η1 η

1 1.3006 1.3006 1.3006
2 0.99266 0.99266 0.99266
3 0.992485 0.992485 0.992485
4 1.0224 1.0224 1.0224
5 1.06986 1.06985 1.06986
6 1.07511 1.07444 1.07581
7 0.863428 0.854739 0.872515
8 0.659905 0.638829 0.681944
9 0.79568 0.772953 0.819459
10 0.806511 0.78376 0.830315
11 0.779004 0.756219 0.802843
12 0.774807 0.752123 0.79854
13 0.79293 0.769954 0.81697
14 0.79858 0.77594 0.822268
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Conclusion and take-home messages

▶ Combining estimates for clusters of eigenvalues and convex models, we obtained guaranteed estimates on
the energy of solutions to Kohn–Sham equations.

▶ Computing the full guaranteed is not tractable ⇒ approximation by means of Neumann series.
▶ Best ratio accuracy / computational cost: 0th order approximation of the discretization error.
▶ General message3 is to find a good balance between mathematics (guaranteed bounds) and usage

(computable bounds, for a reasonable cost).

Perspectives and ideas:
▶ Adaptive schemes.
▶ Finite temperature.
▶ Better control on the remainder terms.
▶ Extension to nonconvex models.
▶ Other quantities of interest.

3Cancès, Dusson, Kemlin, Levitt, Practical error bounds for properties in plane-wave electronic structure calculations, SIAM Journal on Scientific
Computing 44 (2022).
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