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Introduction
Oe0000

Quantum mechanics of noninteracting electrons

We consider the stationary Schrédinger equation

{Hoscf =¢€ipi, €1 < - < en, ) 1

leille =1,

where ; is the wavefunction associated to electron i. Then,
N

m E= ZE,‘ is the total energy;

i=1

N
m p(x) = Z lgi(x)|” is the total electronic density.
i=1
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Introduction
00®@000

Numerical resolution

Find ¢; € (CN, s.t Hopi = €ipi, e1<---<epn

Orbitals ; are not unique (degeneracies, phase factor) ~ better to work with the projectors onto the
space spanned by the (¢;)i<i<n:

N
. N XN
P=> o) (wil € Crix.
i=1

m P is a rank N orthogonal projector (density matrices);

m the total energy then writes

N N
E=> =Y (pilHopi) = Tr(HoP),
i=1 i=1

and is minimal for this P among all rank N orthogonal projectors.
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Introduction
000e00

We have two equivalent problems:
Hopi = €ipi, e1 < --- < ¢ .
o et N = min Tr(HoP)
Iz =1 e
where o
My ={PeCN*N|pP=pP" Tr(P)=N, P’=P}

is the set of rank N orthogonal projectors. It is a Grassmann manifold.
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Introduction
0000e0

General framework

In reality, electrons do interact together so that the general form of the energy is
E(P) = Tr(HoP) + En(P),

where

m P e CN*Nis a density matrix;

herm

m Hy is the core Hamiltonian:

m E, models the electron-electron interaction depending on the model (Kohn-Sham DFT — local
and semi-local functionals —, Hartree-Fock, Gross-Pitaevskii, ... ).

min E(P) = Tr(HoP) + En(P),

PEMy

My ={PeCVN|P=pP" T(P)=N, PP=P}.
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Introduction
O0000e

In practice, the required N\ to achieve high precision is way too high. To solve this issue, we use
subspaces of smaller dimension to compute a variational approximation of P,, the reference solution in

M.

~+ we focus on discretization error, but there are other sources (models, arithmetics, ...)
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Introduction
O0000e

In practice, the required N\ to achieve high precision is way too high. To solve this issue, we use
subspaces of smaller dimension to compute a variational approximation of P, the reference solution in

M.

)

~+ we focus on discretization error, but there are other sources (models, arithmetics, ..

How to evaluate the error made on quantities of interest (Qol) ? We focus here on the energy and the

forces.
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Mathematical framework
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Mathematical framework
m Structure of the manifold
m Super-operators
m Numerical setting
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Mathematical framework

Assumptions

min E(P) = Tr(HoP) + En(P),

PeMy

My ={PeCVN|Pp=pP T(P)=N, P>=P}.

Let H = (C'"\“'X"\‘", HHF) endowed with the Frobenius scalar product Tr(A*B).

herm

Assumption 1 E, : H — R is twice continuously differentiable, and thus so is E.

Assumption 2 P, € My is a nondegenerate local minimizer in the sense that there exists some n > 0
such that, for P € My in a neighborhood of P,, we have

E(P) > E(P.) +n|lP — P.|2.
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Mathematical framework

Structure of the manifold: the tangent space

My is a smooth manifold, we can define its tangent space (it is a R vector space). l1p is the
orthogonal projection on Tp M y:

My
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Mathematical framework

First order condition

min E(P) = Tr(HoP) + En(P)
PEMy

The first-order optimality condition is MNp, (H.) = 0, which gives

)

\ P.H,(1—P.,)=(1— P.)H.P. =0

where H, == VE(P,).

In particular, [H., P.] = 0.
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Mathematical framework

Second order condition

min E(P) = Tr(HoP) 4 Eu(P)

The second order optimality condition reads

VX € To, My, (X, (R + K)X)e = 0| XI2 |

m K. :=TMp V?E(P.)Np,;
m the operator Q. : Tp, My — Tp, My is defined by,

VX ETh, My, QX :=—[P.,[H., X]].
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Mathematical framework

Second order condition

min E(P) = Tr(HoP) 4 Eu(P)

The second order optimality condition reads

VX € To, My, (X, (R + K)X)e = 0| XI2 |

m K. :=TMp V?E(P.)Np,;
m the operator Q. : Tp, My — Tp, My is defined by,

VX ETh, My, QX :=—[P.,[H., X]].

~ Q. + K. can be interpreted as the Hessian of the energy on the manifold, €. represents the
influence of the curvature.
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Mathematical framework

Plane-wave DFT

Throughout the talk, we perform numerical tests in DFTK!, a PW DFT tool-kit for Julia. In short:
= we consider a periodic system with lattice R, w is the unit cell and R* the reciprocal lattice;

= we solve a variational approximation of the KS-DFT equations in the finite dimensional space
* 1 2
Xe, = {ec, GER"| 5|6 < Eus}

where, for G € R*,

https://dftk.org, developed by M. F. Herbst and A. Levitt.
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Mathematical framework

Numerical setting

m FCC phase of the silicon crystal, within LDA approximation and 2 x 2 x 2 Brillouin zone
discretization;

® we compute a reference solution for Eqytref = 125 Ha = Eqyiref defines A the size of the reference
space and we obtain the reference orbitals ®,, the energy E., density p., the forces F. on each
atoms, etc. ..

m for smaller E.,:'s, we compute the associated variational approximation and we measure the error
on different quantities:

[E—Edl, lp=pullzs  [F=Fi
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Crude error bounds
L]

Crude error bounds using linearization
m Linearization in the asymptotic regime
m Error bounds based on operator norms
m Error bounds for the forces
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Crude error bounds
@00

Linearization: main idea

Assume you want to solve R(x) = 0 with R a differentiable quantity, with Jacobian Jg. Then, around
a solution x., it holds at first order

R(x) = R(x:) + Jr(x:)(x = x:),

from which we deduce

(¢ —x) ~ Jr(x) R(x) |

Newton’s algorithm :

‘Xkﬂ — X — (") IR(x) ‘
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Crude error bounds
(o] Joj

Linearization: application to our model

Q. + K. is the Jacobian? of P+ MpH(P) = R(P) at P..

MNp(P — P.) = (. + K,) 'R(P)

2Eric Cances, Gaspard Kemlin, Antoine Levitt. Convergence analysis of direct minimization and self-consistent iterations.
SIAM Journal of Matrix Analysis and Applications, 42(1):243-274 (2021).

Gaspard Kemlin  CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022



Crude error bounds
(o] Joj

Linearization: application to our model

Q. + K. is the Jacobian? of P+ MpH(P) = R(P) at P..

MNp(P — P.) = (. + K,) 'R(P)

Newton’s algorithm : extend the definition of  and K outside of P, and let 2R be a retraction to the
manifold

PAH — R, <Pk — (P + K(P¥)

R(Pk)>

2Eric Cances, Gaspard Kemlin, Antoine Levitt. Convergence analysis of direct minimization and self-consistent iterations.
SIAM Journal of Matrix Analysis and Applications, 42(1):243-274 (2021).
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— |Escr — E.| 10 — lpscr — pllr2 —+ |Fscr — Fi|
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~ the asymptotic regime is quickly established: | Mp(P — P.) = (2. + K*)flR(P)

Gaspard Kemlin  CERMICS & Inria Practical error bounds in electroni CECAM UQ



Crude error bounds
L]

Error bounds based on operator norms

MNp(P — P.) = (. + K.) 'R(P)

First crude bound : ||P — P,|| and ||R(P)|| cannot be
directly compared (not the same unit) but we have

1P = Pulle = [IMe(P — Pu)lle
<@+ KT

RLG
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Crude error bounds
L]

Error bounds based on operator norms

—+ ITLp (P = P)lle

=% (s + K7, mn )~ lop | R(P) [0
Np(P — P.) = (. + K.) "R(P) 100 F ‘
ol
First crude bound : ||P — P,|| and ||R(P)|| cannot be g E
directly compared (not the same unit) but we have 1071 - 4
10-2 ]
1P = Pulle ~ [Me(P — P ; ;
. -3 L J
<[+ KD)TH|IRP) - 1075
1074 | §
~~ the bounds are several orders of magnitude above the B ]
error. .. 1075 ¢ ‘ ‘ ‘ i

20 40 60 80

Ecut

Gaspard Kemlin  CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022 20 /



Crude error bounds
L]

Error bounds based on operator norms

MNp(P — P.) = (. + K.) 'R(P)
One can change the metric with M ~ 1 — 1A

|MY2Np(P — P.)

E

< M )M MR
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Crude error bounds
L]

Error bounds based on operator norms

—— |M'2TIp(P — P,)||p
|M~V2R(P)|p
1/2 _ 1/2
cxe M (9 + K, )T Mo
x| M~V2R(P)|p
T

One can change the metric with M ~ 1 — 1A i ‘ ]

10% x\x\ E

1/2 o r X, ]

|M2ne(P — P.)|| k L ]

107" g o E

< || M2 Qe+ K)TIMY2| [ MTER(P)| i e 1

107 \\ y\x‘x E

~ the bounds are several orders of magnitude above the g . RNV

error. . . but have the same rate -3 '\‘\& 4

~+ asymptotically HM’I/QR(P)HF ~ |[MY*ne(P - P.) ’F. g T f

r S 1

though not upper bound nor guaranteed. The same Ll Sk

holds for || M~ 'R(P)||_~ [P~ P.]. 107" g ‘ ‘ ‘ A
F 20 40 60 80
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Crude error bounds
L]

Error bounds for the forces

Forces are decomposed into two components (local and non-local)?®.

Local forces: Let F/°(P) be the local forces on atom j

jya
in direction «. It holds (at first order):

Fia(P) = F%(Px) = dF(P) - Mp(P — P.);

[F5(P) — FS(P.)

Jro

< o

(Pl 01y n 1P = Pl

3This comes from the pseudopotentials approximations and Hellmann-Faynman theorem.
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Crude error bounds
L]

Error bounds for the forces

Forces are decomposed into two components (local and non-local)?®.

10t % :
>
Local forces: Let F/°5(P) be the local forces on atom j x"‘*x%x_x
in direction «. It holds (at first order): = 10-2| TR i
S % Xex
B
o
Fra(P) = Fia(P.) = dF5(P) - (P — P.); g 107 1
=
loc loc loc 1075 loc loc |
Fra(P) = Fiza(P)] < [[dFE(P) |y 1P = Pele - ——  [EFls(P) - Fls(Py)|
- %= HdFl“( 7o My -2l P = Pullr
10—11 L L L
20 40 60 80
Eeut

~~ several orders of magnitude above !

3This comes from the pseudopotentials approximations and Hellmann-Faynman theorem.
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Crude error bounds
L]

Error bounds for the forces

Forces are decomposed into two components (local and non-local)?®.

Total forces : Combining local and nonlocal forces on all
atoms, we have F(P) € R3M#atoms and

F(P) — F(P.) = dF(P)-Np(P — P.,).

~» What happens if we directly replace Mp(P — P.) by
M~1R(P) in dF(P) - Np(P — P.)?

3This comes from the pseudopotentials approximations and Hellmann-Faynman theorem.
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Crude error bounds
L]

Error bounds for the forces

Forces are decomposed into two components (local and non-local)?®.

10-2F T T T N
- 1074} 2
Total forces : Combining local and nonlocal forces on all
atoms, we have F(P) € R3N#atoms and
1076 - 8

F(P) — F(P.) = dF(P)-Np(P — P.,).

hartree/bohr

~» What happens if we directly replace Mp(P — P.) by 10-*
M~1R(P) in dF(P) - Np(P — P.)?

—10 |- -
10 1 1 1 1 1

0 20 40 60 80
Ecut

~~ linearization quickly valid;
~ even if Mp(P — P.) and M™*R(P) are asymptotically equivalent, orange and blue do not match.

3This comes from the pseudopotentials approximations and Hellmann-Faynman theorem.
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Enhanced error bounds
®0000

B Enhanced error bounds based on frequencies splitting
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Enhanced error bounds
Oe000

Frequency splitting

Let P € My, then Tp My can be split into low and high frequencies. More precisely, given
Eat < Ecut,ref, we have

TeMy = Mg, TpMy & Mg, TeMy
w w w
X = X1 + X2
7 I I
P = Y1 + P2

with ¥1 € Xe,., V2 € X2, and X, ., = Xe, D X2,

ut, ref
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Frequency splitting

Enhanced error bounds
Oe000

Let P € My, then Tp My can be split into low and high frequencies. More precisely, given

Ecur < Ecut,rer, we have

= Ne,TJpMny & Ng, TeMn
w w

= X1 + X2
) )

= 1 + 2

with 1:[)1 € XEcut' w2 € Xéut and XEcut,ref = XEcut 2] XEJ;M'

If P is a solution of the variational problem for a given E.u, then R(P), M~ 'R(P) € I_IécmTp/\/lN (not
exactly true in practice because of numerical quadrature errors due to exchange-correlation terms.).
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Enhanced error bounds
[ele] lele]

‘)VOC .
Let us analyze in details the computation of F;%(P): FPs(P) = —Tr f)RI P | so that computing
ORj o
0 oC
dl—_j'_",f(P) - X for X € Tp My reduces to the scalar product of X against I1p ‘)RI .
ORj o
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Enhanced error bounds
[ele] lele]

0 VOC .
Let us analyze in details the computation of F;%(P): FPs(P) = —Tr <f))RI P) so that computing
ORj o

loc

dl—_j'_c’,f(P) - X for X € Tp My reduces to the scalar product of X against I1p T
ORj o

1076

T ‘ :
1 ,]\Jl—lrl .
m M~ 'R(P) is high frequencies; 0.8 < |
m Mp(P — P.) is mainly high frequencies but with low 0.6l 5 !: * |

frequencies components; 5 :; .
oV, X ; .

(] I'IpaRr; is mainly low frequencies. 04 :*’gé,,& :!}} . i

02} &k“ﬂﬁ" « % xox xx

x xg;"")ﬁ* !x! x X x

’:;x x& "x x x X x!
0 [ .
|

L L L L
0 2,000 4,000 6,000 8,000

index of G by increasing norm
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Enhanced error bounds
[ele] lele]

0 VOC .
Let us analyze in details the computation of F;%(P): FPs(P) = —Tr <(;)RI P) so that computing
YRe"
dF°%(P) - X for X € TpMp reduces to the scalar product of X against I1p ngc .
) ORj o
1076
T T
1- ! x€1 |
%
—1 . . . . 0.8 - x -
m M™"R(P) is high frequencies; *

m [p(P — P.) is mainly high frequencies but with low

0.6 |- *
frequencies components;
MVoce . . .
® Mp—— is mainly low frequencies. 0.4} g
ORj,a
0.2
0 - -

L L L L
0 2,000 4,000 6,000 8,000

index of G by increasing norm
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Enhanced error bounds
[ele] lele]

r)\/OC .
Let us analyze in details the computation of F;%(P): FPs(P) = —Tr <f)RI P) so that computing
ORj o
0 oC
dl—_j'_c’,f(P) - X for X € Tp My reduces to the scalar product of X against I1p ‘)RI .
ORj o
T T T T T
* x BMOC .
21 (17P)E)X_m@1 ]
m M~R(P) is high frequencies; 151 |
m Mp(P — P.) is mainly high frequencies but with low
frequencies components; 1 x B
WVioc . .
m [lp- is mainly low frequencies. ¥ x
al?f~<\ [ x»‘x
051 *, « |
o
¥x %X

’

1 1
2,000 4,000 6,000 8,000

index of G by increasing norm

o
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Enhanced error bounds
[ele] lele]

(r)\/loc
0/?1'.0

Let us analyze in details the computation of F;%(P): FPs(P) = —Tr ( P) so that computing

loc

dl—'}f’j(P) - X for X € Tp My reduces to the scalar product of X against I'ngR .
\j, o

10-2 T T T T |
R, — |F(P) — Fi|
1 L . ) - %= [dF(P) - (TILp(P — P,))|
m M™"R(P) is high frequencies; o | dF(P) - (M-R(P))| |
m [Mp(P — P.) is mainly high frequencies but with low =
frequencies components; 2
oV g 10°r 1
® Mp—— is mainly low frequencies. £
ORja i
~~ orange and blue do not match because the error and 1078 b
the residual don't have the same support in frequencies,
even if HM*F\’(P)HIE ~ ||[Np(P — P.)||z asymptotically. 1010 ‘ ‘ ‘ ‘ i
0 20 40 60 80
Ecut
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Enhanced error bounds
(elele] Jo]

Enhanced error bounds

We decompose the error/residual relation onto Mg, Tp My @ Mg, TP M7 to get

(Q+K)11 (Q+K)12 Pr—Pa| _ R
(Q+K)21 (Q+K)22 P27'D*2 B ’
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Enhanced error bounds
(elele] Jo]

Enhanced error bounds

We decompose the error/residual relation onto Mg, Tp My @ Mg, TP M7 to get

{(Q +K), (Q+ K)n} [Pl — Pﬂ} - {Rl}
(Q+K)21 (Q+K)22 P27'D*2 B ’

As the kinetic energy is dominating for high-frequencies, we approximate

1
(4 K)y =0 and (Q+K),,~ Mn = <7—A + 1> on the tangent space ,

2

X_

cut

and thus

{(n +K)y (+ K)@ {Pl - P} _ m
0 My, P, — Po|  |R|’
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Enhanced error bounds
(elele] Jo]

Enhanced error bounds

We decompose the error/residual relation onto Mg, Tp My @ Mg, TP M7 to get

{(Q +K), (Q+ K)n} [Pl — Pﬂ} - {Rl}
(Q+K)21 (Q+K)22 P27'D*2 B ’

As the kinetic energy is dominating for high-frequencies, we approximate

1
(4 K)y =0 and (Q+K),,~ Mn = <7—A + 1> on the tangent space ,

2

X_

cut

and thus
(Q+K)11 (Q+K)12 Pi—Pa| _ |R
0 M2, P, —Po|  |R|”

This yields a new residual, which requires only an inversion on the coarse grid Xg.,, (M2 being easy to
invert):

—1 —1
Ren(P) = {(Q R (R (K0, Mz Rﬂ |
22 2
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Enhanced error bounds
[ee]ele]

10-3 ﬁ\ﬁ\’\ —+ [F-F
RN W =X Py — Fi
Fer — Fi = F(P)—dF(P)~(|_|p(P—P*))—F(P*), . ‘X\E\E'l\“f‘ [Fres — £
P 107° 1 X\X\E"E:\'\‘ =B | Fschur — Fil|
_ & X BgEya
Fres — F. := F(P) = dF(P) - (M'R(P)) — F(P.), E o xx‘an*ﬁa\'e’*\:\:- |
;F: 10-9 | *x i:rEtLu\'\;_ .
FSChIJI’_F* = F(P)_dF(P)(RSchur(P))_F(P*)7 \XIX\X‘)( uﬂ
10-11 | %X -
\xx
1078 |, L I I I i
0 20 40 60 80
Eeut
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Enhanced error bounds
[ee]ele]

T T T T
1073 B N \}Fi 7F}L\

Fue — o = F(P) — dF(P) - (Me(P — P.)) = F(P.), W r—

= 1077 X\X\E"EZ\\'\&- -8+ | Fsehur — Fi| |

2 X Bk
Fes — Fo = F(P) —dF(P) - (M'R(P)) — F(P.), 5 1077| “x R 1

;:4 X . - l\:—

g 107 x  wd n‘u\'\;. .

\ ,X\

Foome = F. = F(P) ~ 0F(P) - (Reaw(P) - F(P),~ | e |
~+ we win about one order of magnitude in the approxi- \xx
mation of the error of the forces F — F,. 1078 ! ! ! | =

0 20 40 60 80
Eecut
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Numerical examples
o0

Numerical examples

GaAs

100 [ T T T . -
—+ |Bscr — E. o — lpscr = pule . —+— |Fscr — Fi|
|Exewton = Ex| e lloNewion = pellz 1oy +\ |Fewton = Fu| ]
10 ;l
109 1 104 | 1
sl d
10 1070 1 1077 - 1
10712 l 1070 1 10-10 1 i
1016 Lt L L L L J 072 L | L L ] 10713 ko L L L L E|
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m The asymptotic regime is quickly established;
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Conclusion and take-home messages

The asymptotic regime is quickly established;
error estimates based on operator norms are not good;
in the PW setting, this come from the high frequencies nature of the residual;

using a Schur complement to couple high and low frequencies clearly enhances the approximation
of the error;

Gaspard Kemlin  CERMICS & Inria Practical error bounds in electronic structure CECAM UQ 2022



Conclusion
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Conclusion and take-home messages

m The asymptotic regime is quickly established;

= error estimates based on operator norms are not good,;

m in the PW setting, this come from the high frequencies nature of the residual;

m using a Schur complement to couple high and low frequencies clearly enhances the approximation
of the error;

® we can either compute error bounds or enhance the precision of the Qol;

m the coupling between high and low frequencies can be pushed further;
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Conclusion
L le]

Conclusion and take-home messages

The asymptotic regime is quickly established;
error estimates based on operator norms are not good;

in the PW setting, this come from the high frequencies nature of the residual;

using a Schur complement to couple high and low frequencies clearly enhances the approximation
of the error;

we can either compute error bounds or enhance the precision of the Qol;
m the coupling between high and low frequencies can be pushed further;

m Limits: we do not have guaranteed bounds, but useful in practice, valid asymptotically and for a
cost comparable to a SCF cycle (inverting Q + K).
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Preprint with more details:
https://hal.inria.fr/hal-03408321

Tutorial:
https://juliamolsim.github.io/DFTK.jl/dev/examples/error_estimates_forces/

Code:
https://github.com/gkemlin/paper-forces-estimator
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Resolution

min E(P) = Tr(HoP) + En(P),

PeMy

My ={PeCVN|Pp=pP T(P)=N, P>=P}.

direct minimization Euler-Lagrange equation
1 \
projected gradient onto the constraint manifold SCF formulation

(Ho + VEW(P))pi = €ivi,
(pilps) = by,

N
P=> lo ol
i=1
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Tangent space

In the decomposition H = Ran(P) @ Ran(1 — P), we have:

= |:1(’)V g] and Tp My = {X L?* S}}

A density matrix P € My can be described with N orbitals (any orthonormal basis of Ran(P)):
N
P= len el with (piles) = 5.
i=1

Given such a P, an element X of Tp. My can be described with N vectors that are all orthogonal to the
pi's:

N N
X ="l (Wil + i) (il with  (gile) = 0 = [IX|E =2 [l
i=1 i=1
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Tangent space

In the decomposition H = Ran(P) @ Ran(1 — P), we have:

= |:1(’)V g] and Tp My = {X L?* S}}

A density matrix P € My can be described with N orbitals (any orthonormal basis of Ran(P)):
N
P= len el with (piles) = 5.
i=1

Given such a P, an element X of Tp. My can be described with N vectors that are all orthogonal to the
pi's:

N N
X ="l (Wil + i) (il with  (gile) = 0 = [IX|E =2 [l
i=1 i=1

PeMy < (pi)icien € (CV)N spanning Ran(P)

XeTpMy < (Ui)icien € (CV)N where (gj]h;) =0
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Change of norm : given X € Tp My, one might want to compute ||MX||. for a metric M on the
tangent space. This can be translated in terms of orbitals as

N N
MX =" fon) (Mpi] + M) (il [IMX (|l =2 |[Mips

i=1 i=1

where M; : Ran({p;})* — Ran({;})" and can eventually depend on the band /. In this talk we will
use (with I the projection on Ran({i;})* and t; the kinetic energy of band /):

MY2 o (- A/2)Y2N0 < HY2 norm
M o Nt —A2)Y2N(5 — A/2)Y2N < H'norm

M2 o (Nt —A/2)Y2m) < H™Y2 norm
Mt o (N(t—A/2)YN0(H - A/2)Y2M) ™ < H™! norm
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Extension and computation of super operators

Computing K : K(P) :=TpV?E(P)Mp can be defined at any P = ZII\LI |pi) (@il € Mp. In terms of
orbitals, this translates into

N
VX ETeMy, K(P)X = lo) (Vi + |5Veer) (il

i=1
where X is described by (¥:)i<ic<n € (Ran({;})*)" and

N
(Vi)icicn — 0p =2 Z ihi = 6V = (SVpiicisn.
i=1
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Computing Q : for P = ZlN:l lpi) {wi| € My, we define Q(P) : TeMpy — TpMpy by
VX ETpMy, QUP)X = —[P,[H(P), X]].

where H(P) := VE(P). In terms of orbitals it translates into

2PIX =) <(1 ~P) (H(Pw»,- - ZAULU)

where X is described by (¥i)1<i<v € (Ran({p;})*)" and A; = ¢ H(P)yp: (diagonal if P = P.).

+ hc,
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Analysis What is used in practice
Pe My <~ P = (@;)1g,‘g/\/ S ((CN)N spanning Ran(P)
X eTpMy < V= (Yi)icien € (CV)V st (pili) =0
N
IXIE 2 vl
" i=1
IMX|2 2 |IMiy|* for s = —1,-1/2,1/2,1
i=1
K(P)X PN K(®)V = (6Vpi)icicn

QPX o 20 = (1= P) (HPY: ~ T Aty ) )

1IN
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Mathematical justification for 1D Gross-Pitaevskii

—D¢u + Voo + ¢2 = A, —D¢n + Ny (Von — dx) = Ano,
H(ZS*HLi7k =1 ¢.>0o0n Rd7 H(i)N”Li =1

n I'Ij;N is the orthogonal projector (for the L% inner product) onto on;
m Ay is the self-adjoint operator on ¢y defined by Ay := (Qn + Kn) where Qy and Ky represent, in
the orbital framework, the super-operators (P )|7, Mo, and K(Pn)|7p, Mo, . We have

(1) Y uw € n, Quiow =5, (—A+ V+ ) — M) dn,
(2) Vn € gy, Know =115, (20%0n) ;

[ M,l\/2 is the restriction of the operator ﬂém(l - A)l/zl_quN to the invariant subspace ¢y .

We have
=0.

N XNiaLi

Jim. HM,l\/z(QN 4 Kn) MY —
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Guaranteeing bounds

Solve R(x) =0 with R: Y — Z.

Theorem (Inverse function theorem — Newton - Kantorovich®)

Assume that
m DR(x) € L(Y,Z) is an isomorphism
= 2] 0RG)7 |,y L (2]1PRO)7 ., 1RGOz 1) <1
with L(e) = sup,cp(x,ay [IDR(X) — DR(Y)ll 7.y

Then, the problem R(x) = 0 has a unique solution x. in the
ball B(x,2||DR(x)7*||, ,, [IR(x)z/]|). Moreover,

2 |oR0) ), IR

X

Ix = xlly < 2[|DRG)TY| ., IRzl

?Gabriel Caloz, Jacques Rappaz. Numerical analysis for nonlinear and
bifurcation problems. Handbook Numerical Analysis, 5:487-637 (1997).
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