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DFT and response calculations
@00

Why computing response to external perturbations ?

= Kohn—Sham Density Functional Theory (KS-DFT) ~~ directly gives quantities of interest such as
ground-state density and energy.

m However, many quantities of interest depends on the response of the system to external
perturbations:
m forces (response to atomic displacements) are easy thanks to the Hellmann-Feynman theorem;
m in general, one needs to compute the response of the orbitals to external perturbations (phonons,
polarisability, conductivity, ...);
®m machine learning applications require derivative w.r.t. model parameters.
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DFT and response calculations
o

DFT and response calculations

The Kohn—Sham equations for a system with Ng = 2N/, electrons read

Hybn = €npn, €1 <2< 0"
(bny Pm) = dom

+oo “+o0
pr) = faloa(, > =Ny
n=1 n=1

where
B H, = 1A+ V + Viy(p) + Vic(p) is the Kohn—Sham Hamiltonian;
m f, € [0,2] is the occupation number of the orbital ¢n:
i <
m for insulators and semi-conductors, f, = 2 !f n < Np,
0 ifn> Ny,

En —EF

m for metals, one usually uses finite temperature T and f, = ( ), with f a fixed smearing
+oo
function (e.g. f(x) =2/(1+4 ¢€X)). ef is then defined such that Z fo = Ne.

n=1
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DFT and response calculations
ooe

Assume that you have computed a solution to the Kohn—Sham equations. How does the density p
changes if the Hamiltonian is perturbed by an external potential 6V ?

1S, Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional
perturbation theory. Reviews of Modern Physics, 73(2):515-562, 2001.

2M. F. Herbst and A. Levitt. Black-box inhomogeneous preconditioning for self-consistent field iterations in density
functional theory. Journal of Physics: Condensed Matter, 33(8):085503, 2020.

3A. Levitt. Screening in the Finite-Temperature Reduced Hartree—Fock Model. Archive for Rational Mechanics and Analysis,
238(2):901-927, 2020.
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DFT and response calculations
ooe

Assume that you have computed a solution to the Kohn—Sham equations. How does the density p
changes if the Hamiltonian is perturbed by an external potential 6V ?

d123

In this framework, the response to an external perturbation §V can be compute via
N fy— f,
0p(r) = D L = 05(r)bm(r) (6 Vimn — 02 Om)
n=1 m=1 - -

where Apmn = (@m, Adn). We use the convention

fnffn 1 r (En —EF /
I S (ST ERY
e T ( T ) ’

1S, Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional
perturbation theory. Reviews of Modern Physics, 73(2):515-562, 2001.

2M. F. Herbst and A. Levitt. Black-box inhomogeneous preconditioning for self-consistent field iterations in density
functional theory. Journal of Physics: Condensed Matter, 33(8):085503, 2020.

3A. Levitt. Screening in the Finite-Temperature Reduced Hartree—Fock Model. Archive for Rational Mechanics and Analysis,
238(2):901-927, 2020.
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Computation of response
L]

Insulators and semi-conductors

For insulators and semi-conductors, things are easy:

Np +oo Np

) =23 S —E i )En(r)Vim =23 60(r)" 5601,

Sm
n=1 m=Np+1

where 3¢,(r) can be computed from the Sternheimer equation*

Q(H/' - :/Y)Q()-()N = *20(5-\/(,),%
Np
where Q =1 — P and P = Z ‘Om> <¢m‘

m=1

1 N, N, +1

“R. M. Sternheimer. Electronic Polarizabilities of lons from the Hartree-Fock Wave Functions. Physical Review,
96(4):951-968, 1954.
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Computation of response
®0000

Metals

The real fun happens with metals:
m first, select N orbitals that have an occupation number f, above some numerical threshold;
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Computation of response
®0000

Metals

The real fun happens with metals:
m first, select N orbitals that have an occupation number f, above some numerical threshold;

m introduce free parameters am, € [0, 1] such that amn + @nm = 1. Using symmetry between n and
m, we obtain

op(r) =23 "3 It 67 (F)bm(F) (6 Vi — 0250mn) = 220 )Sn(r);
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Computation of response
®0000

Metals

The real fun happens with metals:
m first, select N orbitals that have an occupation number f, above some numerical threshold;

m introduce free parameters am, € [0, 1] such that amn + @nm = 1. Using symmetry between n and

m, we obtain

N  +oco

— QZZ — amngf);i(r)@m(r)(évmn — 0eFbmn) = QZQ) )on(r

n=1 m=1

= conservation of charge directly gives [ dp(r)dr =0 = dcr = (Zl::l 1 V,,,,) / <Z:I:1 f,{);

GAMM 2022
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Metals

Computation of response
®0000

real fun happens with metals:
first, select N orbitals that have an occupation number f, above some numerical threshold;
introduce free parameters am, € [0, 1] such that aums + anm = 1. Using symmetry between n and

m, we obtain

N  +oco

— QZZ — amngf);i(r)@m(r)(évmn — 0eFbmn) = QZQ) )on(r

n=1 m=1

conservation of charge directly gives [ dp(r)dr =0 = e = (Zl::l 1 V,,,,) / <Z:I:1 f,{);

for n < N, split d¢,, into two contributions: 6, = d¢5 + 509 where
N
P __ | s [ e .
m 5P, = E (dm, 0¢n) dm € Span(dm)i1<m<n can be explicitly computed;

m=1
400

[ 6@‘),? = E (dm, dbn) ¢m € Span(dm)n+1<m can be obtained through the Sternheimer equation.

m=N+1
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Computation of response
(o] lelele]

N
605 = Z (¢m, Opn) ¢m can be obtained by computing all the contributions

m=1
- fo — fm - C
<Om. ()On> — f”mn (() an - ASF()mn) .

Different possibilities for aums exist (because the Sternheimer equation is ill-posed in Span(¢m)i<m<n):
B amp = 1/2 is the simplest possibility;

Qmn = F2/(£2 + £2) makes §¢, small if £, is small (implemented for instance in DFTK);

Qmn = f (5"}5’”) where f(x) =1/(1 + ¢*) (implemented in Quantum Espresso);

amn = 1g>¢, and any = 1/2 (implemented in Abinit);

whatever you like as long as amn + apm = 1.
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Computation of response
(o] lelele]

N
605 = g (¢m, Opn) ¢m can be obtained by computing all the contributions

m=1

<Om. ()‘On> — u”mn (5an - 55F5mn) .

En —Em

Different possibilities for aums exist (because the Sternheimer equation is ill-posed in Span(¢m)i<m<n):
B amp = 1/2 is the simplest possibility;

Qmn = F2/(£2 + £2) makes §¢, small if £, is small (implemented for instance in DFTK);

Qmn = f (5"}5’”) where f(x) =1/(1 + ¢*) (implemented in Quantum Espresso);

amn = 1g>¢, and any = 1/2 (implemented in Abinit);

whatever you like as long as amn + apm = 1.

This is nice because it brings numerical stability:

) 1, )
|{(¢m, dn)| < max - | £ (X)] 16 Vinn — S€F0mnl ,

so that an error on §V is amplified at most by max.cr + |f'(x)]|.
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Computation of response
00e®00

oo
60,? = Z (dm, 0¢n) ¢m cannot be computed in a similar way as we do not know all the ¢, for

m=N+1
m > N + 1. However, as for insulators, it solves the Sternheimer equation:

N

where Q =1 [ém) (én|-

m=1

55. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional
perturbation theory. Reviews of Modern Physics, 73(2):515-562, 2001.
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Computation of response
00e®00

oo
60,? = E (dm, 0¢n) ¢m cannot be computed in a similar way as we do not know all the ¢, for

m=N+1
m > N + 1. However, as for insulators, it solves the Sternheimer equation:

N

where Q =1 [ém) (én|-

m=1

~~ This can be solved with iterative solvers, but it is possibly very ill-conditioned as, for metals,

ent+1 — en > 0 can be very small. Solutions to this exists in the literature (e.g. appropriate shift of the
Hamiltonian®), and we suggest a new one, based on the inversion of a (better conditioned) Schur
complement.

55. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties from density-functional
perturbation theory. Reviews of Modern Physics, 73(2):515-562, 2001.
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Computation of response
000e0o

We actually have some information about additional orbitals ¢ = (;g'm)/\H,lgmg NNy -

= some of them have been discarded from the response calculations because f, is too small, these
are exact (up to numerical tolerance) eigenvectors;

m others have been used to enhance the convergence of the SCF algorithm, but they have not been
fully converged by the eigensolver.
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Computation of response
000e0o

We actually have some information about additional orbitals ® = (¢m)nt1<manine,

= some of them have been discarded from the response calculations because f, is too small, these
are exact (up to numerical tolerance) eigenvectors;

m others have been used to enhance the convergence of the SCF algorithm, but they have not been
fully converged by the eigensolver.

In particular, we can assume that <<T>., H,,<T>> is a diagonal matrix. We can thus write H, into the
decomposition

N N+ Nex
Ran(P) @ Ran(T) @ Ran(R) with P = Z [pm) (Pm|, T = Z \5,,,)(5,,,\ R=1-P-T.
m=1 m=N+1
as
E 0 0
H,=1(0 Ee, TH,R
0 RH,T RH,R
where

E = Diag(e1,...,en), Ex= <$7 Hp$)7 RH, T =0 if ® is exclusively exact eigenvectors.
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Computation of response
O000e

P R
R AL T e —
| |
1 N+1 N + Nex
Ran(P) @ Ran(P) & @ Ran(R)
H _(E—en 0 E—e¢, 0 0
A ) Hp—en=| 0 T(H, — en)R
0 R(H, —en)T R(H, —en)R
invert
invert for free (diagonal)
v invert R(H, —en)R
possibly ill-conditioned for n = N L

if enp1 — ey is too small

better conditioned for n = N as ey yn, 11 — En > Ens1 — EN

plug things together via a Schur complement to get 6
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Numerical tests
90000000

Density-functional toolkit® — https://dftk.org

high-
performance
computing

materials
simulations

m Julia code for plane-wave DFT
m Fully composable with Julia ecosystem:

m Arbitrary precision

m Automatic Differentiation

m Numerical error control
novel

scientific

models

numerical
analysis

m Both suitable for mathematical developments and relevant applications

m 1D problems, toy models for rigorous analysis
m DFT up to 1,000 electrons

m 3 years of development (M.F. Herbst and A. Levitt) and ~ 7k lines of code

8 M. F. Herbst, A. Levitt, and E. Cancés. DFTK: A Julian approach for simulating electrons in solids. Proceedings of the
JuliaCon Conferences, 3(26):69, 2021.

Gaspard Kemlin  CERMICS & Inria Calculation of response properties in DFT


https://dftk.org
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Numerical tests
(o] lelelelele]e]

Aluminium

Alyg: elongated aluminium supercell with 40 atoms and we use
m PBE exchange-correlation functional;
m Fermi-Dirac smearing with T = 1073 hartree;
m 3 X 3 x 1 discretization of the Brillouin zone;

E..t = 45 hartree;

N, = 60 electron pairs ~~ standard heuristics give 72 bands + 3 nonconverged bands for every
k-point for calculations, occupation threshold is 1078,

~ we compute §¢F with am, = £2/(f2 4 £2), then solve the Sternheimer equation for 8¢Q with and
without the Schur complement, for every Bloch fiber of the periodic KS Hamiltonian associated to
each k-point.
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Numerical tests
[ele] lelelelele]

k-point 1 2 5
N 69 58 67
Nex 6 17 8

eEn—1 fn—1 0359 1.03-107° 0.359 7.77-107°% 0.344 1.85

en v 0.359 1.02-107° 0.360 5.23-10"° 0.344 1.84

EN+1 st 0.391 1.25-107'° 0.373 8.01-107' 0.366 9.16-107°
EN41 — EN 0.0320 0.0134 0.0217

#iterations n = N Schur 42 41 37
#iterations n = N no Schur 49 74 53

Table: Sternheimer convergence data for 3 particular k-points for Alyg.
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Numerical tests
[e]ele] lelele]e]

Schur — k-point at [0.333,0.0,0.0] no Schur — k-point at [0.333,0.0,0.0]

102 F T ] 102 - T T

1071 | B 10~ | i

T 107t 1 = 1070 1
7 7
2 &

1077+ B 10-7 |- B

1071 I I ! ! L 10711 | I I ! 1

0 10 20 30 40 0 20 40 60 80

iterations iterations

Figure: Sternheimer convergence data for all eigenvalues of one particular k-point for Alg.

~~ global computational time (all k-points included) is reduced from 8,090 applications of the
Hamiltonian without the Schur complement to 6,960 (15% gain).
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Numerical tests
0000e000

Heusler compounds

Fe,MnAl: halfmetallic behavior, spin T ~ metal and spin | ~ insulator
m PBE exchange-correlation functional;
m Gaussian smearing with T = 1072 hartree;
m 13 x 13 x 13 discretization of the Brillouin zone;
m E.+ = 45 hartree;
= f, € [0, 1] here, but we double the number of k-point (one for each spin);

m N, = 25 electron pairs ~~ standard heuristics give 35 bands + 3 nonconverged bands for every
k-point for calculations, occupation threshold is 1078

~+ we compute 5¢F with am, = £2/(f2 + £2), then solve the Sternheimer equation for §¢¢ with and
without the Schur complement, for every Bloch fiber of the periodic KS Hamiltonian associated to
each k-point.
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Numerical tests
O0000e00

spin channel T 1
N 28 26
Nex 10 12
EN_2 fn_2 0.447 0.877 0.438 0.992
EN-1 fn—1 0.469 0.0213 0.480 0.00016
en fn 0.473 0.00608 0.491 1.72-1077
ENt1 fnst 0.515 1.06-10"Y 0506 1.8-107'®
EN+1 — EN 0.0423 0.0154
#iterations n = N Schur 47 47
#iterations n = N no Schur 87 104

Table: Sternheimer convergence data for both spin channel of one particular k-points for Fe,MnAl.
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Numerical tests
OO000O0

Schur — k-point at [0.385,0.231,0.077] 1 no Schur — k-point at [0.385,0.231,0.077]

—10 |- ) — -
10 ‘ ‘ ‘ ‘ . ‘ 10710 F J

0 10 20 30 40 50 0 20 40 60 80
iterations i

Schur — k-point at [0.385,0.231,0.077] |

102

1071

10-10 |- ) ] 10-10 |

I I
0 10 20 30 40 50
iterations iterations

Figure: Sternheimer convergence data for all eigenvalues of both spin channels of one particular k-point for Fe,MnAl.
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Figure: Sternheimer convergence data for all eigenvalues of both spin channels of all k-points for Fe,MnAl.

~~ global computational time (all k-points included) is reduced from 83.7 x 10° applications of the
Hamiltonian without the Schur complement to 56.1 x 10% (33% gain).
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Take-home messages and outlooks
®0

Take-home messages and outlooks

Take-home messages:
m insulators are easy: 0¢, € Span(¢m)ni1<m and the Sternheimer equation is usually
well-conditioned;
m metals are more difficult: 56, = d¢F + 6%
m 5¢} solves the ill-posed Sternheimer equation in Span(¢m)i1<m<n and we derived a common
framework from the literature which ensures numerical stability (computational time is negligible);

[ ] (S'd)no solves the ill-conditioned Sternheimer equation in Span(¢m)n+1<m and we enhanced its
resolution through a Schur complement. Numerical experiments give satisfying results.

Outlooks:

m how to choose Nex ? ~~ estimate the conditioning of the Schur complement to reach a given
enhancement of the convergence, but still requires a first SCF calculation.

= how to adapt on the fly (i.e. during SCF) the number of extra bands ?

= implemented by default in DFTK, which allows for efficient Automatic Differentiation
implementations.
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Thanks for your attention !

Joint work with

m

ric Cances Michael F. Herbst Antoine Levitt Benjamin Stamm
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