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Motivation: Kohn–Sham DFT equations with pseudopotentials

Popular model in quantum chemistry and materials science for its accuracy and computational
efficiency.
The goal is to solve the nonlinear eigenvalue problem



(HρΦφn)(x) := (− 1
2 ∆ + Vext(x)) φn(x) + VHxc[ρΦ](x) φn(x) = λnφn(x), λ1 6 λ2 6 · · · 6 λNel ,∫

Ω
φ∗

n(x)φm(x)dx = δnm,

ρΦ(x) =
Nel∑
n=1

|φn(x)|2 .

Kinetic and potential term

Nonlinear term modeling the
interaction of electrons together

Electronic density

Pseudopotentials: replace the core electrons by a noninteracting equivalent potential to reduce
computational time ⇒ Vext = Vpseudo.
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Pseudopotentials and regularity results

Cancès, Chakir, Maday1

For a specific class of VHxc, it was proved that if Vpseudo ∈ Hs for s > 3/2, then φn and ρ are in Hs+2 ⇒
optimal polynomial convergence rates for planewave discretizations in any Hr with −s < r < s + 2.
This applies to Troullier-Martins pseudopotentials2, for which s = 7

2 − ε.

What happens for other classes of pseudopotentials ? In particular, Goedecker-Teter-Hutter (GTH)
pseudopotentials3, which have entire continuations to the entire complex plane. The latter applies, but
is nonoptimal.

1E. Cancès, R. Chakir, and Y. Maday. Numerical analysis of the planewave discretization of some orbital-free and
Kohn-Sham models. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2):341388, 2012.

2N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3):19932006,
1991.

3S. Goedecker, M. Teter, and J. Hutter. Separable dual-space Gaussian pseudopotentials. Physical Review B, 54(3):1703,
1996.
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Objectives

Study the periodic Schrödinger operator H := −∆ + V when V is a periodic analytic potential, in the
case of the linear elliptic equation Hu = f and the eigenvalue problem Hu = λu.

It is known since a long time456 that the solutions to elliptic equations on Rd with real-analytic
data have an analytic continuation in a complex neighborhood of Rd .
The size of this neighborhood is a priori unknown. In the periodic setting, it has a direct impact
on the convergence of the planewave approximation.

⇒ In this talk, we study this question in 1D.

4S. Bernstein. Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre. Mathematische
Annalen, 59(1-2):2076, 1904.

5A. Friedman. On the Regularity of the Solutions of Non-Linear Elliptic and Parabolic Systems of Partial Differential
Equations. Indiana University Mathematics Journal, 7(1):4359, 1958.

6I. G. Petrovskii. Sur lanalyticité des solutions des systèmes déquations différentielles. Matematiceskij sbornik, 47(1):370,
1939.
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Some notations

L2
per(R,C) : square-integrable 2π-periodic functions on R, (·, ·)L2 its usual inner product;

for u ∈ L2
per(R,C) we define its Fourier coefficients

∀ k ∈ Z, ûk := (ek , u)L2
per

= 1√
2π

∫ 2π

0
u(x)e−ikx dx , with ek(x) = 1√

2π
eikx ;

the periodic Sobolev space of order s:

Hs
per(R,C) :=

{
u ∈ L2

per(R,C)

∣∣∣∣∣ ∑
k∈Z

(1 + |k|2)s |ûk |2 < ∞

}
, (u, v)Hs

per :=
∑
k∈Z

(1 + |k|2)s ûk v̂k .
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Spaces of analytic functions

Definition
For A > 0 define the space

HA :=

{
u ∈ L2

per(R,C)

∣∣∣∣∣ ∑
k∈Z

wA(k) |ûk |2 < ∞

}
where wA(k) := cosh(2Ak),

endowed with the inner product
(u, v)A :=

∑
k∈Z

wA(k) ûk v̂k .
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HA :=

{
u ∈ L2

per(R,C)

∣∣∣∣∣ ∑
k∈Z

wA(k) |ûk |2 < ∞

}
where wA(k) := cosh(2Ak),

HA can be canonically identified with

H̃A :=

u : ΩA → C analytic

∣∣∣∣∣∣
[−A,A] 3 y 7→ u(· + iy) ∈ L2

per(R,C) continuous,∫ 2π

0

(
|u(x + iA)|2 + |u(x − iA)|2

)
dx < ∞

 ,

where ΩA := R + i(−A,A) ⊂ C, (u, v)
H̃A

= 1
2

(
(u(· + iA), v(· + iA))L2

per
+ (u(· − iA), v(· − iA))L2

per

)
.

R

iR

0 π 2π−π−2π

A

A
ΩA
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(
(u(· + iA), v(· + iA))L2

per
+ (u(· − iA), v(· − iA))L2

per

)
.

Proof:

‖u‖2
H̃A

= 1
2

(
‖u(· + iA)‖2

L2
per

+ ‖u(· − iA)‖2
L2

per

)
= 1

2

(∑
k∈Z

∣∣ûk e−kA∣∣2 +
∑
k∈Z

∣∣ûk e+kA∣∣2)
=
∑
k∈Z

wA(k) |ûk |2 = ‖u‖2
A.
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Analytic potentials

Proposition
Let B > 0. Then, for all 0 < A < B, the multiplication by a function V ∈ HB defines a bounded
operator on HA.

Proof: Let V ∈ HB . It holds, for all 0 < A < B,

‖V ‖2
L(HA) = sup

u∈HA\{0}

‖Vu‖2
A

‖u‖2
A

= sup
u∈HA\{0}

‖V (· + iA)u(· + iA)‖2
L2

per
+ ‖V (· − iA)u(· − iA)‖2

L2
per

‖u(· + iA)‖2
L2

per
+ ‖u(· − iA)‖2

L2
per

6 2 max
{

‖V (· + iA)‖2
L∞

per , ‖V (· − iA)‖2
L∞

per

}
< +∞.
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The linear Schrödinger equation with source term

For V ∈ L2
per(R,R), V > 1 and f ∈ L2

per(R,C), we know that the problem

(1) Seek u ∈ H2
per(R,C) such that − ∆u + Vu = f on R

has a unique solution u satisfying ‖u‖L2
per

6
‖f ‖L2

per

α
and ‖u‖H1

per
6 ‖f ‖H−1

per
, where

α = λ1(−∆ + V ) > 1.

Theorem
Let B > 0 and V ∈ HB be real-valued and such that V > 1 on R. Then, for all 0 < A < B and
f ∈ HA, the unique solution u of (1) is in HA. Moreover, we have the following estimate

∃ C > 0 independent of f such that ‖u‖A 6 C ‖f ‖A .

As a consequence, if V and f are entire, then so is u.
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Proof: Let u ∈ H2
#(R,C) be the unique solution to −∆u + Vu = f . For N > 0, we decompose it into

u = u1 + u2

where u1 ∈ XN and u2 ∈ X ⊥
N , where

XN := Span{ek , |k| 6 N}.

Then, write the equations satisfied by u1,2 by projecting −∆u + Vu = f onto XN and X ⊥
N :

u1 ∈ HA as it has finite Fourier support;
u2 ∈ HA for N large enough: the restriction of −∆ + V to X ⊥

N is invertible and its inverse is in
L(HA) if N is large enough.

Put things together to get that u = u1 + u2 ∈ HA for N large enough.
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The linear eigenvalue problem

We study the HA regularity of the solutions to

(2)

{
−∆u + Vu = λu,
‖u‖L2

per(R,C) = 1.

Theorem
Let B > 0, V ∈ HB be real-valued, and (u, λ) ∈ H2

per(R,C) × R a normalized eigenmode of
H = −∆ + V , with isolated eigenvalue (i.e. a solution to (2)).
Then, u is in HA for all 0 < A < B. As a consequence, if V is entire, then so is u.

Proof: very similar to Hu = f .
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Consequences on the convergence of planewave discretization

We study the convergence of planewave approximation of the linear eigenvalue problem (2).
Planewave approximation: variational approximation in the finite dimensional space

XN = Span{ek , |k| 6 N}.

(3)


Seek (uN , λN) ∈ XN × R such that ‖uN‖L2

per(R,C) = 1 and

∀ vN ∈ XN ,

∫ 2π

0
∇uN · ∇vN +

∫ 2π

0
V uNvN = λN

∫ 2π

0
uNvN ,

Theorem
Let B > 0, V ∈ HB be real-valued, j ∈ N∗ and 0 < A < B. Let λj the lowest j th eigenvalue of the
self-adjoint operator H = −∆ + V on L2

per(R,C) counting multiplicities, and Ej = Ker(H − λj) the
corresponding eigenspace. For N large enough, we denote by λj,N the lowest j th eigenvalue of (3), and
by uj,N an associated normalized eigenvector. Then, there exists a constant cj,A ∈ R+ such that

∀ N > 0 s.t. 2bNc + 1 > j, dH1
per

(uj,N , Ej) 6 cj,A exp (−AN) and 0 6 λj,N −λj 6 cj,A exp (−2AN) .
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The nonlinear case: a counter-example

Consider the Gross-Pitaevskii-type equation, for f with an entire analytic continuation:

(4) − ε∆uε + uε + u3
ε = f := µ sin .

Let ψε(y) := Im (uε(iy)). It solves the ODE:{
εψ̈ε + ψε − ψ3

ε = µ sinh,
ψε(0) = 0, ψ̇ε(0) = u′

ε(0).

As soon as ψε reaches 1 + η for some η > 0 (which can be justified with combined numerical and
convexity arguments), we can use comparison theorems for systems of ODE to prove that ψε is
bounded from below by the solution to the ODE{

ξ̇ε,η = 1
2
√

ε/2
(ξ2

ε,η − 1),

ξε,η(yη) = 1 + η,

whose solution is defined only up to Yε,η =
√

ε
2 log

(
1 + 2

η

)
+ yη . As ψε is bounded from below by

ξε,η, it is defined only up to Yε 6 Yε,η and thus uε is not entire.
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−2

−1

1

2

3

4

B0 Yε,ηyη

1√
3

1 + η

Xµ =
{
(y, z) ∈ R2, µ sinh(y)− z + z3 ⩾ 0

}
{(y, ψε(y)), ψ

′′
ε (y) ⩾ 0} ⊂ Xµ

Xµ =
{
(y, z) ∈ R2, µ sinh(y)− z + z3 < 0

}
{(y, ψε(y)), ψ

′′
ε (y) < 0} ⊂ Xµ

ψ0(y)

ψε(y)

ξε,η(y)

y

z

ε = 0.1, µ = 0.5, η = 0.5
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Take-home messages

Analyticity of the input data (source term, potentials) automatically conveys to the solution in the
linear case. In particular, if the data is entire, so is the solution.
This has direct consequence on the convergence of planewave approximation: the rate is
exponential. In particular, for entire data, the numerical approximation converges faster than any
exponential.
⇒ justifies the use of GTH pseudopotentials (e.g. in DFTK, see Michael F. Herbst’s talk)

In the nonlinear case, such results are not true anymore and determining the analyticity band size
must be dealt with case by case.
⇒ in the periodic setting, planewave approximation with GTH pseudopotentials still converges
exponentially

Pre-print available at https://hal.inria.fr/hal-03692851v2.
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