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Electronic structure

Our goal: compute the ground state energy of the many-body
Hamiltonian He for a given system with N electrons

min
{
〈Ψ|He|Ψ〉

∣∣ Ψ = (ψi ) ∈ L2(R3,C)N , 〈ψi |ψj〉 = δij
}
.

 too hard to solve !
1 approximation;
2 discretization;
3 resolution. ← we focus on this
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General framework

General form of the energy

E (P) := Tr (H0P) + Enl(P),

where
H0 is the core Hamiltonian;
Enl models the electron-electron interaction depending on the
model.

Examples: Kohn-Sham DFT, Hartree-Fock, Gross-Pitaevskii,. . .
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General framework

Constrained minimization:

(1) inf
P∈MN

E (P) := Tr (H0P) + Enl(P),

MN :=
{
P ∈ RNb×Nb

∣∣ P = P∗, Tr(P) = N, P2 = P
}
.

Euler-Lagrange equations:

(2)


(H0 +∇Enl(P))φi = εiφi , ε1 6 · · · 6 εN

φ∗i φj = δij ,

P =
N∑

i=1
φiφ
∗
i .

 Enl = 0: linear eigenvalue problem.
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Mathematical framework

H :=
(
RNb×Nbsym , ‖·‖F

)
endowed with the Frobenius scalar

product 〈A,B〉F := Tr(AB);
H(P) = ∇E (P) and K (P) := ΠP∇2E (P)ΠP ;
ΠP is the orthogonal projection on TPMN :

ΠP(X ) = PX (1− P) + (1− P)XP.

In the decomposition H = Ran(P)⊕ Ran(1− P), we have:

P =
[
1N 0
0 0

]
and TPMN :=

{
X =

[
0 ×
×∗ 0

]}
.
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Mathematical framework

R : H →MN is a retraction s.t.

R(P + δP) = P + ΠPδP + O(δP2) for P ∈MN .

MN

TPMN

ΠP

δP
P
•

R(P + δP)
•
R
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Mathematical framework

Assumption 1 Enl : H → R is twice continuously differentiable,
and thus so is E .

Assumption 2 P∗ ∈MN is a nondegenerate local minimizer of
(1) in the sense that there exists some η > 0 such
that, for P ∈MN in a neighborhood of P∗, we have

E (P) > E (P∗) + η ‖P − P∗‖2F.

Let H∗ := H(P∗) and K∗ := K (P∗).
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Approach

Study, analyze and compare two algorithms,

SCF Gradient descent

Classical Damped SCF Project gradient
With memory Anderson LBFGS

Table: Classes of algorithms

 which one is better, why ?
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First order condition

The first-order optimality condition is ΠP∗(H∗) = 0, which gives

P∗H∗(1− P∗) = (1− P∗)H∗P∗ = 0 .

[H∗,P∗] = 0 ⇒ H∗ and P∗ can be codiagonalized;
if (φi )16i6Nb is an o.n.b. of eigenvectors of H∗ ordered by
increasing eigenvalues, then P∗ =

∑
i∈I φiφ

∗
i , with I the set

of occupied orbitals;
I ⊂ {1, . . . ,Nb} and |I| = N:

I = {1, . . . ,N}: Aufbau principle;
I = {1, . . . ,N} and εN < εN+1: strong Aufbau principle.

Gaspard Kemlin CERMICS & Inria Algorithms for electronic structure EMC2 Seminar 12 / 33



Introduction Optimality conditions Algorithms analysis and comparison Numerical tests Conclusion and outlooks

Second order condition

The second order optimality condition reads

∀ X ∈ TP∗MN , 〈X , (Ω∗ + K∗)X 〉F > η ‖X‖
2
F .

the operator Ω∗ : TP∗MN → TP∗MN is defined by, for i ∈ I
and a /∈ I,

(Ω∗X )ia = (εa − εi )Xia and (Ω∗X )ai = (εa − εi )Xai ,

so that the gap ν = mina/∈I εa −maxi∈I εi is the smallest
eigenvalue of Ω∗;
Ω∗ + K∗ can be interpreted as the Hessian of the energy on
the manifold, Ω∗ represents the influence of the curvature.
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Projected gradient algorithm

MN

TPkMN

δP = −∇E (Pk)

ΠPk (δP)

Pk
•

Pk+1
•
R

Data: P0 ∈MN
while convergence not reached do

Pk+1 := R
(
Pk − βΠPk∇E (Pk)

)
;

end
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Convergence

Theorem (Classical result)

Let E : H → R satisfy Assumption 1 and 2 with P∗ a local
minimizer of (1). Then, if P0 ∈MN is close enough to P∗, the
iterations

Pk+1 := R
(
Pk − βΠPk∇E (Pk)

)
linearly converge to P∗ for β > 0 small enough, with asymptotic
rate r(1− βJgrad) where Jgrad := Ω∗ + K∗.
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Proof: Apply lemma to

f :
∣∣∣∣∣MN → MN
P 7→ R (P − βΠP (∇E (P)))

and show that r (df (P∗)) < 1:
1 the differential at P∗ on the tangent plane TP∗MN is

df (P∗) = 1− β (K∗ + Ω∗) ;

2 recall the second order condition:

K∗ + Ω∗ > η > 0,

therefore, for β small enough, r(df (P∗)) < 1.
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SCF algorithm

MN

TPkMN

A(Pk)•

Pk • Pk+1
•R

A(Pk) =
N∑

i=1
φk

i

(
φk

i

)∗

Data: P0 ∈ PN
while convergence not reached do

solve

H(Pk)φk
i = εk

i φ
k
i , εk

1 6 · · · 6 εk
N < εk

N+1(
φk

i

)∗
φk

j = δij ,
;

Pk+1 := R
(
Pk + βΠPk

(
A(Pk)− Pk

))
;

end
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Convergence

Theorem
Let E : H → R satisfy Assumption 1 and 2 with P∗ a local
minimizer of (1). Assume that P∗ satisfies the strong Aufbau
principle

A(P∗) = P∗and ν := εN+1 − εN > 0.

Then, for β > 0 small enough and P0 ∈MN close enough to P∗,
the iterations

Pk+1 := R
(
Pk + βΠPk

(
A(Pk)− Pk

))
linearly converge to P∗, with asymptotic rate r(1− βJSCF) where
JSCF := 1 + Ω−1∗ K∗.
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Proof: Apply lemma to

f :
∣∣∣∣∣MN → MN
P 7→ R (P + βΠP (A(P)− P))

and show that r (df (P∗)) < 1:
1 compute the differential of A on TP∗MN with a perturbation

method: dA(P∗) = −Ω−1∗ K∗;
2 the differential at P∗ on TP∗MN is

df (P∗) = 1− β(1 + Ω−1∗ K∗);

3 1 + Ω−1∗ K∗ ∼ Ω−1/2∗ (Ω∗ + K∗)Ω−1/2∗ which has real positive
eigenvalues by the second order condition and therefore, for β
small enough, r(df (P∗)) < 1.
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Comparing the Jacobian matrices

Both algorithms have Jacobian matrices of the form 1− βJ with
Gradient descent: Jgrad = Ω∗ + K∗ is self-adjoint for 〈·, ·〉F;
SCF: JSCF = 1 + Ω−1∗ K∗ is self-adjoint for 〈Ω∗·, ·〉F.

Hence
in the linear regime, the SCF can be seen as a matrix splitting
method for the gradient descent;
the smaller the gap, the more difficult the convergence of the
SCF.
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Comparing the Jacobian matrices

Fastest convergence: eigenvalues of 1− βJ as close to 0 as
possible. If λmin and λmax are the smallest and largest eigenvalues
of J , the optimal step is β∗ = 2/(λmin + λmax) and the rate of
convergence is

r = κ− 1
κ+ 1 with κ = λmax

λmin
.

Gaspard Kemlin CERMICS & Inria Algorithms for electronic structure EMC2 Seminar 22 / 33



Introduction Optimality conditions Algorithms analysis and comparison Numerical tests Conclusion and outlooks

Comparing the Jacobian matrices

Jgrad = Ω∗ + K∗

κ(Jgrad) 6
‖Ω∗‖op + ‖K∗‖op

η

no relationship between η
and the gap ν;
the smaller η, the slower
the convergence;
the bigger
‖Ω∗‖op = εNb − ε1, the
slower the convergence
(solved by
preconditioning).

JSCF = 1 + Ω−1∗ K∗

κ(JSCF) 6
1 + ν−1 ‖K∗‖op

η̃
with η̃ independent of Nb (unif.
coerc. assumption, often valid

in practice)
the smaller the gap ν, the
slower the convergence
(consistent with
well-known issues).
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A toy model with tunable gap

We consider the 2× 2 real matrices P such that P2 = P = P∗ and
Tr(P) = 1. Let

Eε(P) := Tr

(P − [1 ε
ε 0

])2
 .

Then, the gap ν(ε) behaves

ν(ε) ∼ε→0 4ε2

 when ε→ 0, the gap goes to 0: suitable model to study the
influence of the gap.
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A toy model with tunable gap

1 + Ω−1∗ K∗ has a single eigenvalue 1 + 2
ν(ε) ≈ε→0 1 + 1

2ε2

⇒ convergence for β < 4ε2 and for fixed β, εcrit =
√
β/4.
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Local convergence for 1D Gross-Pitaevskii equation
We look at the periodic 1D GP equation on [0, 1]:

−1
2∆φi + Vφi + αρφi = εiφi ,

∫ 1

0
φiφj = δij , ρ =

N∑
i=1
|φi |2,

with V the following smooth potential

0 0.2 0.4 0.6 0.8 1

−40

−30

−20

−10

0

x

V (x)

and then we discretize it with finite differences.
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N = 1, α = 50
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SCF β = 0.1 (core start) asymptotic rate 0.89
SCF β = 0.1 (random start) asymptotic rate 0.90
slope log of spectral radius r(1− βJSCF) = 0.90
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DFTK

Plane-wave basis Julia package for KS-DFT under a
pseudo-potential approximation. It is developed by M. F. Herbst
and A. Levitt at CERMICS.

DFTK
More details on https://dftk.org.
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KS-DFT for a Silicon crystal

LDA approximation;
GTH pseudopotentials;
cutoff energy = 30 Ha;
Γ-only Brillouin zone.

a

We vary the lattice constant a (which reduces the gap) and study
the convergence for different steps.
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Conclusion

Both algorithms converge locally with different rates:
the SCF is sensitive to the gap;
the gradient is sensitive to the spectral radius of the
Hamiltonian.

In practice, which one should be preferred ? It depends on the
convergence rate but also on the cost of each step.

quantum chemistry: computation of H(P) is limiting  both
algorithms are of roughly equal cost; we tend to prefer the SCF
for Aufbau solutions and the gradient otherwise;
condensed-matter: P and H(P) are not store explicitly and the
SCF is performed with block solvers  gradient methods
should more efficient and more robust (the step can be chosen
to minimize the energy). In practice, SCF is more used for its
tricks that are known to work for metallic problems often met
in condensed-matter.
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Ongoing works

This framework is useful to connect error and residual: in the linear
regime

P − P∗︸ ︷︷ ︸
error

≈ (Ω∗ + K∗)−1 [P, [P,H(P)]]︸ ︷︷ ︸
residual

.

 finding norms for which the operator norm above is not too big
can be useful to derive good a posteriori estimators. We aim to
implement this in DFTK at some point.

Ongoing works with Éric Cancès, Geneviève Dusson and Antoine
Levitt.
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Lemma
Let f :MN →MN and P∗ ∈MN s.t. f (P∗) = P∗ and
r(df (P∗)) < 1.
Then, for P0 close enough to P∗, the fixed point iteration
Pk+1 = f (Pk) linearly converges to P∗ with asymptotic rate
r (df (P∗)), in the sense that for all θ > 0 there exists Cθ > 0 s.t.∥∥∥Pk − P∗

∥∥∥ 6 Cθ (r(df (P∗)) + θ)k
∥∥∥P0 − P∗

∥∥∥ .



Details on dA(P∗): A = A ◦ H where, A = 1(−∞,εN ] and, by the strong
Aufbau principle, there exists a contour C in the complex plane enclosing
the lowest N eigenvalues of H∗ such that, for H close to H∗,

A(H) = 1
2πi

∮
C

1
z − H dz .

∀ h ∈ H, dA(H∗)h = 1
2πi

∮
C

1
z − H∗

h 1
z − H∗

dz

=
Nb∑

k=1

Nb∑
l=1

(
1
2πi

∮
C

1
z − εk

hkl
1

z − εl
dz
)
φkφ

∗
l ,

=
N∑

i=1

Nb∑
a=N+1

1
εi − εa

(
hiaφiφ

∗
a + haiφaφ

∗
i

)
= −Ω−1∗ ΠP∗h,

Finally,

∀ X ∈ TP∗MN , dA(P∗)X = dA(H∗)∇2E (P∗)X = −Ω−1∗ ΠP∗∇2E (P∗)ΠP∗X
dA(P∗)X = −Ω−1∗ K∗X .



N = 2, α = 50
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The solution reached by the gradient
occupies φ1 and φ3, the one reached by
ODA has fractional occupation numbers.

The SCF does not converge and we use ODA to explore the interior of the
manifold.



N = 2, α varies
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